SAMPL is an interdisciplinary machine learning research group exploring problems spanning multiple layers of the system stack including deep learning frameworks, specialized hardware for training and inference, new intermediate representations, differentiable programming, and various applications. We are part of the Paul G. Allen School of Computer Science & Engineering at the University of Washington. Our group is a collaboration between researchers from Sampa, Syslab, PLSE, EFESLab and CMU Catalyst.
Checkpointing deep learning models as a dynamic analysis
Parameter Server for Efficient Distributed Deep Neural Network Training for Clusters, Datacenters, and the Public Clouds
High level IR for optimizing machine learning models.
Fast Video Classification via Adaptive Cascading of Deep Models