Fast & Faster Privacy-Preserving ML in Secure Hardware Enclaves

Nick Hynes, Raymond Cheng, Dawn Song | UC Berkeley & Oasis Labs
with support from the TVM team and community!
Ideal: data providers pool data to train a large, complex model
Ideal: data providers pool data to train a large, complex model

TransUnion

Equifax

Experian

credit scoring model
Ideal: data providers pool data to train a large, complex model

Mass. General Hospital → Kaiser Permanente → UCSF Medical → health diagnosis model
Ideal: data providers pool data to train a large, complex model

truly personal assistant
Reality: data providers are mutually distrusting!
Solution: providers cooperate via a virtual trusted third party
Secure Computation Techniques

<table>
<thead>
<tr>
<th></th>
<th>Performance</th>
<th>Support for practical ML models</th>
<th>Security mechanisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trusted Execution Env. (TEE)</td>
<td>☐ ☐ ☐</td>
<td>☐ ☐ ☐</td>
<td>Secure hardware</td>
</tr>
<tr>
<td>Secure multi-party computation</td>
<td>☐ ☐ ☐</td>
<td>☐ ☐ ☐</td>
<td>Cryptography, distributed trust</td>
</tr>
<tr>
<td>Zero-knowledge proof</td>
<td>☐ ☐ ☐</td>
<td>☐ ☐ ☐</td>
<td>Cryptography, local computation</td>
</tr>
<tr>
<td>Fully homomorphic encryption</td>
<td>☐ ☐ ☐</td>
<td>☐ ☐ ☐</td>
<td>Cryptography</td>
</tr>
</tbody>
</table>
Secure Enclaves

Secure enclave
Secure Enclaves

- Integrity
- Confidentiality
Secure Enclaves

- Integrity
- Confidentiality
- Remote Attestation
TEE Implementations

• Intel SGX: in your laptop, Azure, Alibaba Cloud, and IBM Cloud
TEE Implementations

• Intel SGX: in your laptop, Azure, Alibaba Cloud, and IBM Cloud

• Keystone: the first open-source end-to-end secure enclave
 • runs on RISCV chips and FPGAs
 • keystone-enclave/keystone
TEE Implementations

• Intel SGX: in your laptop, Azure, Alibaba Cloud, and IBM Cloud

• Keystone: the first open-source end-to-end secure enclave
 • runs on RISCV chips and FPGAs
 • keystone-enclave/keystone

• Ginseng: a drop-in enclave framework for FPGA ML accelerators
1. Privacy-Preserving ML & Secure Enclaves

2. Myelin: Efficient Private ML in CPU Enclaves

3. Ginseng: Accelerated Private ML in FPGA Enclaves

4. Sterling: A Privacy-Preserving Data Marketplace
Myelin: Efficient Private ML in CPU Enclaves

Model Code ➔ IR passes ➔ Privacy-Preserving Model Graph ➔ Link with SGX runtime ➔ Trusted Model Training Enclave

dmlc/tvm/apps/sgx
dmlc/tvm/rust
Myelin: Efficient Private ML in CPU Enclaves

Step 1: Get the ML in the Enclave
Step 1: Get the ML in the Enclave
Step 1: Get the ML in the Enclave
Step 2: Add *Differential Privacy*
Step 2: Add *Differential Privacy*

- DP offers a strong, formal definition of privacy
Step 2: Add Differential Privacy

• DP offers a strong, formal definition of privacy
• privacy risk to any individual is the same whether or not they contributed data
Step 2: Add *Differential Privacy*

- DP offers a strong, formal definition of privacy
- privacy risk to any individual is the same whether or not they contributed data
- adds noise so that model trained on neighboring datasets are indistinguishable
Step 2: Add *Differential Privacy*

- DP offers a strong, formal definition of privacy
- privacy risk to any individual is the same whether or not they contributed data
- adds noise so that models trained on neighboring datasets are indistinguishable
- slow in standard frameworks
Step 2: Add *Differential Privacy*

- DP offers a strong, formal definition of privacy
- privacy risk to any individual is the same whether or not they contributed data
- adds noise so that model trained on neighboring datasets are indistinguishable
- slow in standard frameworks
Step 2: Add *Differential Privacy*

- DP offers a strong, formal definition of privacy
- privacy risk to any individual is the same whether or not they contributed data
- adds noise so that model trained on neighboring datasets are indistinguishable
- slow in standard frameworks
Step 2: Add **Differential Privacy**

- DP offers a strong, formal definition of privacy
- privacy risk to any individual is the same whether or not they contributed data
- adds noise so that model trained on neighboring datasets are indistinguishable
- slow in standard frameworks
Step 3: Make it Fast

Differentially Private SGD
1. compute forward pass for mini-batch of m examples
2. compute per-example gradients
3. rescale each example’s gradient to have unit norm
4. average them up
5. add noise
6. take gradient step
Step 3: Make it Fast

Differentially Private SGD
1. compute forward pass for mini-batch of \(m \) examples
2. compute *per-example gradients*
3. rescale each example’s gradient to have unit norm
4. average them up
5. add noise
6. take gradient step
Step 3: Make it Fast

Differentially Private SGD

1. compute forward pass for batch of m examples
2. compute per-example gradients
3. rescale each example’s gradient to have unit norm
4. average + noise+ gradient step

autograd takes $O(m)$ [4]
$O(1)$ with custom IR ops

Step 4: Benchmark

Performance on CIFAR-10

<table>
<thead>
<tr>
<th>Model</th>
<th>1 Myelin Enclave</th>
<th>non-private CPU</th>
<th>related work</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGG-9 (training)</td>
<td>21.3 img/s</td>
<td>27.2 img/s</td>
<td>Chiron (4 enclaves) [5]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24.7 img/s</td>
</tr>
<tr>
<td>ResNet-32 (training)</td>
<td>12.4 img/s</td>
<td>13.6 img/s</td>
<td>-</td>
</tr>
<tr>
<td>MobileNet (inference)</td>
<td>32.4 img/s</td>
<td>-</td>
<td>Slalom (enclave+GPU) [6]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>35.7 img/s</td>
</tr>
</tbody>
</table>

State of the Art Performance for ML in Single CPU Enclave

• but a CPU is a CPU: \(\frac{1}{2} \) day to train a ResNet is emotionally unsatisfying

• no GPU TEEs (yet), but we can do FPGAs!
1. Privacy-Preserving ML & Secure Enclaves

2. Myelin: Efficient Private ML in CPU Enclaves

3. Ginseng: Accelerated Private ML in FPGA Enclaves

4. Sterling: A Privacy-Preserving Data Marketplace
Ginseng, the Learning TEE

- Main idea: FPGA can be programmed with ML accelerator (VTA) and the components required to make a TEE
 - memory encryption
 - key generation
 - remote attestation

- TEEs are general-purpose; ML is very particular
 We get big efficiency wins from specializing TEE to ML workloads
Ginseng = VTA + Tensor Encryption + Secure OS
Ginseng = VTA + Tensor Encryption + Secure OS

• Tensor Encryption Core (TEC) safeguards the tensors in memory
 • protects entire models’ tensors for virtually no overhead
Ginseng = VTA + Tensor Encryption + Secure OS

- Tensor Encryption Core (TEC) safeguards the tensors in memory
 - protects entire models’ tensors for virtually no overhead

- Ginseng Secure OS protects the end-to-end workflow
 - built atop formally verified components
 - minimal trusted computing base
 - side-channel resistant
Ginseng = VTA + Tensor Encryption + Secure OS

- Tensor Encryption Core (TEC) safeguards the tensors in memory
 - protects entire models’ tensors for virtually no overhead

- Ginseng Secure OS protects the end-to-end workflow
 - built atop formally verified components
 - minimal trusted computing base
 - side-channel resistant

- End result: an end-to-end secure, speedy ML pipeline
Ginseng = VTA + Tensor Encryption + Secure OS
1. Privacy-Preserving ML & Secure Enclaves

2. Myelin: Efficient Private ML in CPU Enclaves

3. Ginseng: Accelerated Private ML in FPGA Enclaves

3. Sterling: A Privacy-Preserving Data Marketplace
Sterling: A Privacy-Preserving Data Marketplace built on the Oasis blockchain and TVM

Sterling workflow
Sterling workflow

1. data provider encrypts data and uploads to Oasis blockchain
 access to data is controlled by a confidential smart contract
Sterling workflow

1. data provider encrypts data and uploads to Oasis blockchain
 access to data is controlled by a confidential smart contract

2. data consumer uploads a model training smart contract
 which satisfies constraints of provider contract
Sterling workflow

1. data provider encrypts data and uploads to Oasis blockchain
 access to data is controlled by a confidential smart contract

2. data consumer uploads a model training smart contract
 which satisfies constraints of provider contract

3. consumer contract requests data from provider contract
 sends over payment and credentials
Sterling workflow

1. data provider encrypts data and uploads to Oasis blockchain
 access to data is controlled by a confidential smart contract
2. data consumer uploads a model training smart contract
 which satisfies constraints of provider contract
3. consumer contract requests data from provider contract
 sends over payment and credentials
4. provider contract checks that consumer contract satisfies constraints
 and sends back data
Sterling workflow

1. data provider encrypts data and uploads to Oasis blockchain access to data is controlled by a confidential smart contract
2. data consumer uploads a model training smart contract which satisfies constraints of provider contract
3. consumer contract requests data from provider contract sends over payment and credentials
4. provider contract checks that consumer contract satisfies constraints and sends back data
5. consumer contract trains a privacy-preserving model and returns it to the data consumer
Sterling & TVM to the Moon
Sterling & TVM to the Moon

• Sterling facilitates a distributed, trustless, uncoordinated data marketplace
Sterling & TVM to the Moon

• Sterling facilitates a distributed, trustless, *uncoordinated* data marketplace

• builds on the efficiency of TVM with the portability and security of Web Assembly
 • also uses the new TVM Rust runtime!
Sterling & TVM to the Moon

• Sterling facilitates a distributed, trustless, uncoordinated data marketplace

• builds on the efficiency of TVM with the portability and security of Web Assembly
 • also uses the new TVM Rust runtime!

• TVM modules run in secure enclaves provided by the Oasis blockchain
Roadmap
Roadmap

• Training on VTA and CPU! Super excited for Relay autograd
 • Much better than the FExpandCompute kludge pass we’re using now
Roadmap

- Training on VTA and CPU! Super excited for Relay autograd
 - Much better than the FExpandCompute kludge pass we’re using now

- Deploy Ginseng to AWS F1 once VTA Chisel port is ready
Roadmap

- Training on VTA and CPU! Super excited for Relay autograd
 - Much better than the FExpandCompute kludge pass we’re using now

- Deploy Ginseng to AWS F1 once VTA Chisel port is ready
Roadmap

• Training on VTA and CPU! Super excited for Relay autograd
 • Much better than the FExpandCompute kludge pass we’re using now

• Deploy Ginseng to AWS F1 once VTA Chisel port is ready

• automatically checking TVM models for differential privacy
 (on the blockchain, of course)