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data theft

non-payment

inappropriate use

Reality: data providers are mutually distrusting!



Solution: providers cooperate via a virtual trusted third 
party



Trusted Execution Env. (TEE)
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Secure enclave
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• Keystone: the first open-source end-to-end secure enclave
• runs on RISCV chips and FPGAs
•      keystone-enclave/keystone

• Ginseng: a drop-in enclave framework for FPGA ML accelerators
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Myelin: Efficient Private ML in CPU Enclaves

dmlc/tvm/apps/sgx 
dmlc/tvm/rust



Myelin: Efficient Private ML in CPU Enclaves

[3] Efficient Per-Example Gradient Computations. Goodfellow. 2015 
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Step 3: Make it Fast

Differentially Private SGD 
1. compute forward pass for batch of m 

examples 
2. compute per-example gradients 
3. rescale each example’s gradient to have unit 

norm  
4. average + noise+ gradient step

autograd takes O(m) [4] 
O(1) with custom IR ops

[4] Efficient Per-Example Gradient Computations. Goodfellow. 2015 



Step 4: Benchmark

1 Myelin Enclave non-private CPU related work

VGG-9 (training) 21.3 img/s 27.2 img/s
Chiron (4 enclaves) [5]  

24.7 img/s

ResNet-32 (training) 12.4 img/s 13.6 img/s –

MobileNet (inference) 32.4 img/s –
Slalom (enclave+GPU) 

[6]  
35.7 img/s

Performance on CIFAR-10

[5] Chiron: Privacy-preserving machine learning as a service. Hunt, Song, Shokri, Shmatikov, and Witchel. 
2018 
[6] Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware. Tramer and 
Boneh. 2018



State of the Art Performance for  
ML in Single CPU Enclave

• but a CPU is a CPU: ½ day to train a ResNet is emotionally 
unsatisfying 

• no GPU TEEs (yet), but we can do FPGAs!
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Ginseng, the Learning TEE
• Main idea: FPGA can be programmed with ML accelerator (VTA) and 

the components required to make a TEE 
• memory encryption 
• key generation 
• remote attestation 

• TEEs are general-purpose; ML is very particular  
We get big efficiency wins from specializing TEE to ML workloads
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• protects entire models’ tensors for virtually no overhead

• Ginseng Secure OS protects the end-to-end workflow 
• built atop formally verified components 
• minimal trusted computing base 
• side-channel resistant 

• End result: an end-to-end secure, speedy ML pipeline
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Sterling: A Privacy-Preserving Data Marketplace

[1] A Demonstration of Sterling: A Privacy-Preserving Data Marketplace. VLDB 2018.  
[2] Ekiden: A Platform for Confidentiality-Preserving, Trustworthy, and Performant Smart Contract 
Execution. 2018

built on the Oasis blockchain and TVM
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Sterling workflow
1. data provider encrypts data and uploads to Oasis blockchain 

access to data is controlled by a confidential smart contract
2. data consumer uploads a model training smart contract 

which satisfies constraints of provider contract
3. consumer contract requests data from provider contract 

sends over payment and credentials
4. provider contract checks that consumer contract satisfies constraints 

and sends back data
5. consumer contract trains a privacy-preserving model and returns it to 

the data consumer
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Sterling & TVM to the Moon
•Sterling facilitates a distributed, trustless, 
uncoordinated data marketplace  

•builds on the efficiency of TVM with the portability 
and security of Web Assembly 
• also uses the new TVM Rust runtime!  

• TVM modules run in secure enclaves provided by 
the Oasis blockchain
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Roadmap
• Training on VTA and CPU! Super excited for Relay autograd 
• Much better than the FExpandCompute kludge pass we’re using 

now

• Deploy Ginseng to AWS F1 once VTA Chisel port is ready

• automatically checking TVM models for differential privacy  
(on the blockchain, of course)



Thanks!


