
The HammerBlade:  
An ML-Optimized Supercomputer  

for ML and Graphs

!1

Dec 2018

Prof. Michael B. Taylor (PI)
University of Washington

Prof. Luis Ceze
University of Washington

Prof. Adrian Sampson
Cornell University

Prof. Chris Batten
Cornell University

Prof. Zhiru Zhang
Cornell University

Prof. Mark Oskin
University of Washington

 Dr. Dustin Richmond (Postdoc)
University of Washington

!2

Fast Intro to Today’s HW Landscape

The End of Moore’s Law Approaches

Dennard Scaling Ended a Decade Ago
 Energy is a fundamental limiter of all compute

Specialization Is the Solution

!3

HammerBlade: Key Insights

Key Intellectual Thrusts of The HammerBlade

How do we solve HW & SW Specialization Complexity?
 Move from Human-Centric Computation Abstraction Hierarchy
 To a ML-Centric Computation Abstraction Hierarchy

 Language / API
 Compiler / OS
 ISA
 Micro Arch
 Meta HDL
 HDL
 APR
 DFM
 Design Rules

!4

HammerBlade: Key Insights

Key Intellectual Thrusts of The HammerBlade

How do we solve HW & SW Specialization Complexity?
 Move from Human-Centric Computation Abstraction Hierarchy
 To a ML-Centric Computation Abstraction Hierarchy

 Computation

 Physics

Human
Centric
Abstraction
Layers

 Language / API
 Compiler / OS
 ISA
 Micro Arch
 Meta HDL
 HDL
 APR
 DFM
 Design Rules

!5

HammerBlade: Key Insights

Key Intellectual Thrusts of The HammerBlade

How do we solve HW & SW Specialization Complexity?
 Move from Human-Centric Computation Abstraction Hierarchy
 To a ML-Centric Computation Abstraction Hierarchy

 Computation

 Physics

Human
Centric
Abstraction
Layers

 Computation

 Physics

 Language / API
 Compiler / OS
 ISA
 Micro Arch
 Meta HDL
 HDL
 APR
 DFM
 Design Rules

ML
Centric
Abstraction
Layers

!6

HammerBlade: Key Insights

Key Intellectual Thrusts of The HammerBlade

How do we solve HW & SW Specialization Complexity?
 Move from Human-Centric Computation Abstraction Hierarchy
 To a ML-Centric Computation Abstraction Hierarchy

! Redesign the compute stack knowing that
 Machine Learning Will Drive How
 Computation is Realized in HW & SW

!7

HammerBlade: Key Insights

Key Intellectual Thrusts of The HammerBlade

How do we solve HW & SW Specialization Complexity?
 Move from Human-Centric Computation Abstraction Hierarchy
 To a ML-Centric Computation Abstraction Hierarchy

! Redesign the compute stack knowing that
 Machine Learning Will Drive How
 Computation is Realized in HW & SW

 ML Co-designing HW/SW .. for ML
 ML Co-designing HW/SW .. for Graphs
 ML Co-designing HW/SW .. for Graphs & ML

!8

HammerBlade: Key Insights

Key Intellectual Thrusts of The
HammerBlade

How do we solve HW Specialization’s Inflexibility?

Seamless blend of specialization
at multiple levels, with a focus
on tight interoperability...

CGRA
FPGA
ASIC Hard Blocks
RISC-V CPUs
Memory System
Interconnect

Dark Silicon: Not everything is on; Target metric is energy-efficiency not utilization

!9

HammerBlade: Key Insights

Key Intellectual Ideas of The HammerBlade

How do we address the long binding times of
specialization in response to changing datasets?
Move from year/month/day specialization
times to minutes/secs/microsec?

ML-stitching of ML-predesigned
Fabric & Domain Specific Templates

EasyML
Human-Centric DSL

EasyGraph
Human-Centric DSL

PyTorch TensorFlow MxNET

TVM (tensor VM) ML-based
compilation

High-level
optimizations

Schedule
decoupling (Halide)

FPGA
Domain
Template
Language

Manycore
Domain
Template
Library

ASIC Block
Domain
Template
Library

RunTime
Domain
Template
Library

CGRA
Domain
Template
Library

NOC/Mem
Domain
Template
Library

Vertex
Centric

Edge
Centric

Graphit

GVM (graph VM)

Adaptive Layout
Engine

Zuppa

!10

The HammerBlade Hardware Architecture

!11

Program Overview

HammerBlade Chimera Tile
ML-Designed CGRA Fabric
 (Incl. ASIC Hard Blocks)

RISC-V RV32 Cores

ML-Tuned FPUs

ML-Configured
Reconfigurable
Local Memory

ML-Programmed
Interconnections

!12

Specialized Intertile Network Fabrics

!13

Program Overview

HammerBlade ASIC

8K Chimera Tiles

128 RISC-V 64bit
 Linux Capable Cores

Reconfigurable LLC

Reconfigurable I/O

14 & 7nm, large die

Linux-Capable RISC-V RV64G Core – UW/BU Black Parrot; funded by DARPA POSH

!14

Leveraging Celerity’s Manycore into HammerBlade Manycore/CGRA Hybrid

Celerity (opencelerity.org, IEEE Micro ‘18 Paper):
 Broke RISC-V performance record by 100X
 (500B RISC-V ops per sec)
 Silicon proven in 16nm. Open Source.
 50 processors per mm2
 DARPA CRAFT

HammerBlade:
 Exponentially better programmability & perf. robustness
 I-caches in Chimera Tiles (CTs), initial version
 Memory hierarchy, initial version
 Latency Hiding in CTs (non-blocking loads & stores)
 Unified Physical Address Space, initial version

 Preserve amazing compute density and efficiency
 Logic for fully pipelined processor and high performance mesh router
 takes less space than 4K of SRAM (!)
 Integrate CGRA functionality without tile size explosion

HammerBlade Manycore
Im

pl
em

en
te

d?

!15

36-tile HammerBlade Proto in TSMC 40nm; enroute to 16nm

!16

HammerBlade PCB

!17

Program Overview

HammerBlade Chassis

!18

HammerBlade System

!19

Memory Transmutation Layer

Dynamically Optimizing Data Movement
Across the Full Machine Hierarchy

!20

Program Overview

The HammerBlade
A Supercomputer Appliance for ML & Graphs (TA1)
 with a Dynamically Evolving Software Stack (TA2)

Bare Metal

Hardware Personality

Compiler & Runtime

Application

HW/SW Interface

Continuous
Synthesis:

learning-based
empirical

co-design, from
design to

execution.

!21

Q1 Reporting/Updates: TA-2

HBIR

!22

Technical Approach: Software Abstraction Layers

HammerML
Human-Centric DSL

HammerGraph
Human-Centric DSL

PyTorch TensorFlow MxNET

TVM (tensor VM)
ML-based
compilation

High-level
optimizations

Schedule
decoupling
(Halide)

FPGA
Domain
Template
Language

Manycore
Domain
Template
Library

ASIC Block
Domain
Template
Library

RunTime
Domain
Template
Library

CGRA
Domain
Template
Library

NOC/Mem
Domain
Template
Library

GraphIt

GVM (graph VM)

HammerBlade Bare Metal

CUDA Lite

HBIR

CUDA Lite

HBIR

!23

TVM: Extensible, End-to-end Compilation for Deep Learning

160+ contributors,
several industrial
users.

Try it out!

!23

TVM: Extensible, End-to-end Compilation for Deep Learning

160+ contributors,
several industrial
users.

Try it out!

!23

TVM: Extensible, End-to-end Compilation for Deep Learning

Significant engineering cost to
optimize this mapping.
Billions of possibilities.

160+ contributors,
several industrial
users.

Try it out!

!24

AutoTVM: Automating Code Optimizations using ML

● Works very well for low-level ML code optimization
[NIPS’18 spotlight]
○ e.g., beats hand-tuned-by-nVIDIA TitanX CUDA code

● Now applying to HW design exploration
○ Produce HW design variants, evaluate with compiler-in-

the-loop
○ Learn HW design parameters->performance (timing,

power)
○ Next: from code->HW variant->performance

!24

AutoTVM: Automating Code Optimizations using ML

AutoTVM Conv2d example on TitanX

● Works very well for low-level ML code optimization
[NIPS’18 spotlight]
○ e.g., beats hand-tuned-by-nVIDIA TitanX CUDA code

● Now applying to HW design exploration
○ Produce HW design variants, evaluate with compiler-in-

the-loop
○ Learn HW design parameters->performance (timing,

power)
○ Next: from code->HW variant->performance

!25

Bespoke Commodity

Current open implementation @ tvm.ai/vta

Decoupled Access-Execute  
Deep Learning Accelerator Templates

!26

AutoVTA: Automatic Exploration of HW-SW Co-design 
w/ Compiler-in-the-loop (P1-TA2.4)

VTA variants: 1000s 10s

!26

AutoVTA: Automatic Exploration of HW-SW Co-design 
w/ Compiler-in-the-loop (P1-TA2.4)

VTA variants: 1000s 10s

Apply
AutoTVM

Selected designs with best
End-to-End performance.

!27

Short term benefit to having an existing IR for architects to program the manycore.

• CUDA can express independent computation and locality and it is widely used.
• Inability to support CUDA constructs efficiently can identify issues in HB design
• TVM already lowers to CUDA
• Easy to port pre-existing CUDA code over for architectural testing.

• High Levels of Interest from Industry for RISC-V Manycore programmable w/ CUDA

“CUDA Lite” – A Near Term IR for HB Manycore

__global__ void add (int* a, int* b, int* c) {
int tid = threadIdx.x ;
if (tid < N) // out-of-bound checks
 c[tid] = a[tid] + b[tid];

}

hb_tile void add (int* a, int* b, int* c) {
// thread loop
#pragma unroll
for (int x=hb_gangIndex; x < blockDim.x; x+= hb_gangSize){
c[x] = a[x] + b[x];
}

}
 

CUDA

Manycore
Translation

• Stacked DRAM dies connected by TSVs
• 4 dies per HBM device
• 2 devices per HammerBlade package

• Interposer connects SoC and HBM Dies
• Shorter wires, higher density vs DDR4 PCB (Low Power)

• Each die has 4 “semi-independent” channels
• 16x bandwidth vs DDR4 (4 dies * 4 channels)

• Interface is wide/slow (Low Power)
• DDR4 is narrow/fast (High Power)

High Bandwidth Memory (HBM2) Analysis

More bandwidth, more parallelism and lower energy per bit

HBM2 Device (Stack)

HammerBlade
DeviceHBM HBM

Interposer

!29

• HammerBlade Emulation on Amazon F1 FPGA Cloud
• Architecture

• Synthesize HB RTL to FPGA
• HBM2 is emulated with DRAM on board
• High Bandwidth Trace goes out of board to Intel Xeon Disk (~16 GB/sec)
• Lower bandwidth I/O, controlled by C on Xeon

• Write code and initialization data
• Limited interactive debug

• Software users can run our hardware at OS-capable speeds
• No need for them to buy FPGA boards and tools, or license HW tools

• Challenges
• $1.65/hr is cheap unless you forget it’s running for a week!
• Compile times mean that simulation is a faster iteration methodology.
• Main benefits are big workloads, scalability, and usability for non CAD-tool savvy users

Emulation on Amazon F1 FPGA Cloud

Thank You

!30

Dec 2018

Prof. Michael B. Taylor (PI)
University of Washington

Prof. Luis Ceze
University of Washington

Prof. Adrian Sampson
Cornell University

Prof. Chris Batten
Cornell University

Prof. Zhiru Zhang
Cornell University

Prof. Mark Oskin
University of Washington

 Dr. Dustin Richmond (Postdoc)
University of Washington

