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Fast Intro to Today’s HW Landscape

The End of Moore’s Law Approaches 

Dennard Scaling Ended a Decade Ago 
 Energy is a fundamental limiter of all compute 

Specialization Is the Solution 
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HammerBlade: Key Insights

Key Intellectual Thrusts of The HammerBlade 

How do we solve HW & SW Specialization Complexity? 
  Move from Human-Centric Computation Abstraction Hierarchy 
  To a          ML-Centric Computation Abstraction Hierarchy



  Language / API 
  Compiler / OS 
  ISA 
  Micro Arch 
  Meta HDL 
  HDL 
  APR 
  DFM  
  Design Rules
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HammerBlade: Key Insights

Key Intellectual Thrusts of The HammerBlade 

How do we solve HW & SW Specialization Complexity? 
  Move from Human-Centric Computation Abstraction Hierarchy 
  To a          ML-Centric Computation Abstraction Hierarchy

! Redesign the compute stack knowing that  
    Machine Learning Will Drive How  
    Computation is Realized in HW & SW 
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HammerBlade: Key Insights

Key Intellectual Thrusts of The HammerBlade 

How do we solve HW & SW Specialization Complexity? 
  Move from Human-Centric Computation Abstraction Hierarchy 
  To a          ML-Centric Computation Abstraction Hierarchy

! Redesign the compute stack knowing that  
    Machine Learning Will Drive How  
    Computation is Realized in HW & SW 

      ML Co-designing HW/SW .. for ML 
 ML Co-designing HW/SW .. for Graphs 
            ML Co-designing HW/SW .. for Graphs & ML
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HammerBlade: Key Insights

Key Intellectual Thrusts of The 
HammerBlade 

How do we solve HW Specialization’s Inflexibility? 
    
    

Seamless blend of specialization 
at multiple levels, with a focus 
on tight interoperability... 

CGRA  
FPGA  
ASIC Hard Blocks 
RISC-V CPUs 
Memory System 
Interconnect 

Dark Silicon: Not everything is on; Target metric is energy-efficiency not utilization
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HammerBlade: Key Insights

Key Intellectual Ideas of The HammerBlade 

How do we address the long binding times of 
specialization in response to changing datasets?  
Move from year/month/day specialization 
times to minutes/secs/microsec?  
    
    
ML-stitching of ML-predesigned 
Fabric & Domain Specific Templates

EasyML  
Human-Centric DSL

EasyGraph  
Human-Centric DSL

PyTorch TensorFlow MxNET

TVM (tensor VM) ML-based 
compilation

High-level 
optimizations

Schedule 
decoupling (Halide)

FPGA  
Domain  
Template  
Language

Manycore 
Domain 
Template 
Library

ASIC Block 
Domain 
Template 
Library

RunTime 
Domain 
Template 
Library

CGRA 
Domain 
Template 
Library

NOC/Mem 
Domain 
Template 
Library

Vertex  
Centric 

Edge  
Centric

Graphit

GVM (graph VM)

Adaptive Layout 
Engine

Zuppa
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The HammerBlade Hardware Architecture
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Program Overview

HammerBlade Chimera Tile
ML-Designed CGRA Fabric 
  (Incl. ASIC Hard Blocks) 

RISC-V RV32 Cores 

ML-Tuned FPUs 

ML-Configured 
Reconfigurable 
Local Memory 

ML-Programmed 
Interconnections
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Specialized Intertile Network Fabrics
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Program Overview

HammerBlade ASIC

8K Chimera Tiles 

128 RISC-V 64bit  
  Linux Capable Cores 

Reconfigurable LLC 

Reconfigurable I/O 

14 & 7nm, large die 

Linux-Capable RISC-V RV64G Core – UW/BU Black Parrot; funded by DARPA POSH
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Leveraging Celerity’s Manycore into HammerBlade Manycore/CGRA Hybrid 

Celerity (opencelerity.org, IEEE Micro ‘18 Paper):  
 Broke RISC-V performance record by 100X 
   (500B RISC-V ops per sec) 
 Silicon proven in 16nm. Open Source. 
 50 processors per mm2 
 DARPA CRAFT 

HammerBlade: 
 Exponentially better programmability & perf. robustness 
       I-caches in Chimera Tiles (CTs), initial version 
       Memory hierarchy, initial version 
       Latency Hiding in CTs (non-blocking loads & stores) 
       Unified Physical Address Space, initial version 

 Preserve amazing compute density and efficiency 
 Logic for fully pipelined processor and high performance mesh router 
       takes less space than 4K of SRAM (!) 
 Integrate CGRA functionality without tile size explosion 

 

HammerBlade Manycore
Im

pl
em

en
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d?
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36-tile HammerBlade Proto in TSMC 40nm; enroute to 16nm
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HammerBlade PCB
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Program Overview

HammerBlade Chassis
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HammerBlade System
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Memory Transmutation Layer

Dynamically Optimizing Data Movement 
Across the Full Machine Hierarchy  
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Program Overview

The HammerBlade
A Supercomputer Appliance for ML & Graphs (TA1)  
   with a Dynamically Evolving Software Stack (TA2) 

Bare Metal

Hardware Personality

Compiler & Runtime

Application

HW/SW Interface

Continuous 
Synthesis: 

learning-based 
empirical  

co-design, from 
design to 

execution.
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Q1 Reporting/Updates: TA-2

HBIR



!22

Technical Approach: Software Abstraction Layers

HammerML  
Human-Centric DSL

HammerGraph  
Human-Centric DSL

PyTorch TensorFlow MxNET

TVM (tensor VM)
ML-based 
compilation

High-level 
optimizations

Schedule 
decoupling 
(Halide)

FPGA  
Domain  
Template  
Language

Manycore 
Domain 
Template 
Library

ASIC Block 
Domain 
Template 
Library

RunTime 
Domain 
Template 
Library

CGRA 
Domain 
Template 
Library

NOC/Mem 
Domain 
Template 
Library

GraphIt

GVM (graph VM)

HammerBlade Bare Metal

CUDA Lite

HBIR

CUDA Lite

HBIR
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TVM: Extensible, End-to-end Compilation for Deep Learning

160+ contributors, 
several industrial 
users. 

Try it out!
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TVM: Extensible, End-to-end Compilation for Deep Learning

Significant engineering cost to 
optimize this mapping. 
Billions of possibilities. 

160+ contributors, 
several industrial 
users. 

Try it out!
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AutoTVM: Automating Code Optimizations using ML

● Works very well for low-level ML code optimization 
[NIPS’18 spotlight] 
○ e.g., beats hand-tuned-by-nVIDIA TitanX CUDA code  

● Now applying to HW design exploration 
○ Produce HW design variants, evaluate with compiler-in-

the-loop  
○ Learn HW design parameters->performance (timing, 

power) 
○ Next: from code->HW variant->performance
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AutoTVM: Automating Code Optimizations using ML

AutoTVM Conv2d example on TitanX

● Works very well for low-level ML code optimization 
[NIPS’18 spotlight] 
○ e.g., beats hand-tuned-by-nVIDIA TitanX CUDA code  

● Now applying to HW design exploration 
○ Produce HW design variants, evaluate with compiler-in-

the-loop  
○ Learn HW design parameters->performance (timing, 

power) 
○ Next: from code->HW variant->performance
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Bespoke Commodity

Current open implementation @ tvm.ai/vta

Decoupled Access-Execute  
Deep Learning Accelerator Templates
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AutoVTA: Automatic Exploration of HW-SW Co-design 
w/ Compiler-in-the-loop (P1-TA2.4)

VTA variants: 1000s 10s
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AutoVTA: Automatic Exploration of HW-SW Co-design 
w/ Compiler-in-the-loop (P1-TA2.4)

VTA variants: 1000s 10s

Apply 
AutoTVM

Selected designs with best 
End-to-End performance.
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Short term benefit to having an existing IR for architects to program the manycore. 

• CUDA can express independent computation and locality and it is widely used. 
• Inability to support CUDA constructs efficiently can identify issues in HB design 
• TVM already lowers to CUDA 
• Easy to port pre-existing CUDA code over for architectural testing. 

• High Levels of Interest from Industry for RISC-V Manycore programmable w/ CUDA

“CUDA Lite” – A Near Term IR for HB Manycore

__global__ void add (int* a, int* b, int* c) { 
int tid = threadIdx.x ; 
if (tid < N)  // out-of-bound checks 
 c[tid] = a[tid] + b[tid]; 

} 

hb_tile void add (int* a, int* b, int* c) { 
// thread loop 
#pragma unroll 
for ( int x=hb_gangIndex; x < blockDim.x; x+= hb_gangSize){ 
c[x] = a[x] + b[x]; 
} 

} 
 

CUDA

Manycore 
Translation



• Stacked DRAM dies connected by TSVs 
• 4 dies per HBM device 
• 2 devices per HammerBlade package 

• Interposer connects SoC and HBM Dies 
• Shorter wires, higher density vs DDR4 PCB (Low Power) 

• Each die has 4 “semi-independent” channels 
• 16x bandwidth vs DDR4 (4 dies * 4 channels) 

• Interface is wide/slow (Low Power) 
• DDR4 is narrow/fast (High Power)

High Bandwidth Memory (HBM2) Analysis

More bandwidth, more parallelism and lower energy per bit

HBM2 Device (Stack)

HammerBlade 
DeviceHBM HBM

Interposer
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• HammerBlade Emulation on Amazon F1 FPGA Cloud 
• Architecture 

• Synthesize HB RTL to FPGA 
• HBM2 is emulated with DRAM on board 
• High Bandwidth Trace goes out of board to Intel Xeon Disk (~16 GB/sec) 
• Lower bandwidth I/O, controlled by C on Xeon 

• Write code and initialization data 
• Limited interactive debug 

• Software users can run our hardware at OS-capable speeds 
• No need for them to buy FPGA boards and tools, or license HW tools 

• Challenges 
• $1.65/hr is cheap unless you forget it’s running for a week! 
• Compile times mean that simulation is a faster iteration methodology. 
• Main benefits are big workloads, scalability, and usability for non CAD-tool savvy users

Emulation on Amazon F1 FPGA Cloud
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