
TVM & 
THE APACHE SOFTWARE
FOUNDATION
MARKUS WEIMER
MEMBER, APACHE SOFTWARE FOUNDATION

ARCHITECT, MICROSOFT ML PLATFORM

TVM & 
THE APACHE SOFTWARE
FOUNDATION
MARKUS WEIMER
MEMBER, APACHE SOFTWARE FOUNDATION

ARCHITECT, MICROSOFT ML PLATFORM

Why I am
here

TVM & 
THE APACHE SOFTWARE
FOUNDATION
MARKUS WEIMER
MEMBER, APACHE SOFTWARE FOUNDATION

ARCHITECT, MICROSOFT ML PLATFORM

Why I am
here

Pays me to
be here

MARKUS WHO?

Newcomer to TVM ☺
ML researcher and developer, worked on

CofiRank
Data Parallel SGD
Apache REEF
ML.NET

Member of the Apache Software Foundation
Inaugural PMC Chair for REEF
Mentor for mxnet, HiveMall, Nemo

Here to help the TVM community get into The Apache Software Foundation

AGENDA

Intro about the ASF The Apache Way

Community choices Next steps

AGENDA

Intro about the ASF The Apache Way

Community choices Next steps

Open. Innovation. Community.

The Apache Software Foundation
provides support for the Apache
Community of open-source
software projects, which provide
software products for the public
good.

The Apache projects are defined
by collaborative consensus based
processes, an open, pragmatic
software license and a desire to
create high quality software that
leads the way in its field.

We consider ourselves
not simply a group of projects
sharing a server, but rather a
community of developers and
users.

Source: https://www.apache.org/

HISTORY: APACHE HTTPD
19

9? Admins
trading
patches for
NCSA
webserver

19
95 First release
of httpd 19

99 Non-profit,
membership
based
corporation
Protects
contributor
and
intellectual
property

20
16 Most widely

deployed
webserver for
19 years [1]

[1] http://news.netcraft.com/archives/2016/04/21/april-2016-web-server-survey.html

http://news.netcraft.com/archives/2016/04/21/april-2016-web-server-survey.html

ProjectProjectProjectProject

WHAT IS THE ASF? -- A NON-PROFIT COOPERATION

Members

Board

Project

PMC
Officers
(PMC

Chairs)

Contributors Committers
Elect

Appoint

Source for the numbers: http://www.infoworld.com/article/3079813/open-source-tools/the-apache-foundations-incredible-rise.html

ProjectProjectProjectProject

WHAT IS THE ASF? -- A NON-PROFIT COOPERATION

Members

Board

Project

PMC
Officers
(PMC

Chairs)

Contributors Committers
Elect

Appoint

100s

100s

1000s

Source for the numbers: http://www.infoworld.com/article/3079813/open-source-tools/the-apache-foundations-incredible-rise.html

PROJECT LIFECYCLE

Incubatio
n

• Curriculum to learn responsibilities/procedures necessary to protect foundation: 
Diverse community, accept new contributors, develop “in the open”

• Searching for a purpose and a role in the ecosystem.

Mature

• More users/legacy/visibility
• Massive ego; “conquered the web”, etc.
• Propose new abstraction/interface, rather than deep changes to core function

Attic
• Project retirement stage
• Code still available, may be “complete”, but community has moved on

AGENDA

Intro about the ASF The Apache Way

Community choices Next steps

AGENDA

Intro about the ASF The Apache Way

Community choices Next steps

CORE PRINCIPLES

Collaborative software development
Respectful, honest, technical-based interaction
Consistently high quality software
Commercial-friendly standard license
Faithful implementation of standards
Security as a mandatory feature

CORE PRINCIPLES

Collaborative software development
Respectful, honest, technical-based interaction
Consistently high quality software
Commercial-friendly standard license
Faithful implementation of standards
Security as a mandatory feature

CORE PRINCIPLES

Collaborative software development
Respectful, honest, technical-based interaction
Consistently high quality software
Commercial-friendly standard license
Faithful implementation of standards
Security as a mandatory feature

Community over code

MERITOCRACY AND ROLES

MERITOCRACY AND ROLES

•Use the
software
•Ask questions

User

•Give answers
•Add code,

graphics,
testing, …

Developer
•@apache.org
•Tactical

decision
making

Committer

•Project
stewardship

PMC
Member •Board Liaison

•VP @ ASF

PMC Chair

•ASF owners

Member

AUTHORITY IN
APACHE

Don’t be a sycophant
Disagree respectfully
Focus on the technical details

Be easy to
work with

Roles are responsibilities; authority necessary to perform
function
e.g., releases are lock-free; a struggling RM can (should) be
preempted
Leads rotate, authority partitioned to subdomains

Implied,
occasionall

y explicit
aversion to
“leaders”

CONSENSUS DRIVEN DEVELOPMENT

Explicit consensus

•Releases, new
committers /
PMCs, rules
changes, …

•[DISCUSS],
[VOTE], [VOTE]
[RESULT] email
threads

Implicit consensus

•Code changes,
documentation, …

•Given by absence
of veto

Veto powers

•Every committer
has veto powers
against code
changes based on
technical reasons

•Pro tip: never
argue whether the
reasons are
technical

VOTING

+1: I want this to happen
+0: Meh
-0: Ewh, really?
-1: No way. Veto (where possible)

Binding: The vote counts
E.g. PMC votes on release (majority vote)

Non-binding
E.g. User votes in a release

Voting should be relatively rare. The goal is that the project proceeds by consensus, and its members
negotiate outcomes with one another. The votes (+1,-1, …) are sometimes used in discussions to
express opinions outside of a [VOTE] thread.

COMMUNICATIONS

As public as possible:
 user@ for usage questions
 dev@ for development discussion
private@ for personal and legal matters

Easy to search and
archive
E-Mails follow RFC 3676
Plain text, Markdown where needed
Quoting with `>`

“If it didn’t happen on the mailing
list,

it didn’t happen”

LESSON: THE APACHE PROCESS LEADS TO BETTER
SOFTWARE

LESSON: THE APACHE PROCESS LEADS TO BETTER
SOFTWARE

“If it isn’t on the mailing list, it didn’t happen”

LESSON: THE APACHE PROCESS LEADS TO BETTER
SOFTWARE

“If it isn’t on the mailing list, it didn’t happen”
The bad:

Higher latency per issue: Discussing things over email takes longer
This can be trained and gets get better over time.

LESSON: THE APACHE PROCESS LEADS TO BETTER
SOFTWARE

“If it isn’t on the mailing list, it didn’t happen”
The bad:

Higher latency per issue: Discussing things over email takes longer
This can be trained and gets get better over time.

The good:
Full visibility, no need for meetings to “bring everybody on the same page”
Documents the decision process, not just the outcome
Every developer (even the shy ones) have equal influence.

LESSON: THE APACHE PROCESS LEADS TO BETTER
SOFTWARE

“If it isn’t on the mailing list, it didn’t happen”
The bad:

Higher latency per issue: Discussing things over email takes longer
This can be trained and gets get better over time.

The good:
Full visibility, no need for meetings to “bring everybody on the same page”
Documents the decision process, not just the outcome
Every developer (even the shy ones) have equal influence.

The phenomenal:
Quality goes up (code as well as discussion becomes part of your CV)
Throughput goes up (less blockage, uncertainty)

AGENDA

Intro about the ASF The Apache Way

Community choices Next steps

AGENDA

Intro about the ASF The Apache Way

Community choices Next steps

PROCESS HISTORY

As communities form, they make
their own rules
In practice, people copy / merge the
rules from past projects
REEF copied from Spark and
Hadoop, which in turn spawned from
Lucene REEF

• Looks towards Spark and Hadoop

Spark
•Community
overlap with
Hadoop

Hadoop
•Started out
of Lucene

Lucene

CTR VS. RTC

CTR VS. RTC

Commit then review (CTR)

Every committer does the code changes they
see fit.
Other committers review and undo changes.

Stabilization happens during release.
Messy commit log

CTR VS. RTC

Commit then review (CTR)

Every committer does the code changes they
see fit.
Other committers review and undo changes.

Stabilization happens during release.
Messy commit log

Review then commit (RTC)
Every change is reviewed by another committer.
Every change is merged by another committer.

Always releasable software
Extremely clean commit log

Used by every Big Data project in Apache

CTR VS. RTC

Commit then review (CTR)

Every committer does the code changes they
see fit.
Other committers review and undo changes.

Stabilization happens during release.
Messy commit log

Review then commit (RTC)
Every change is reviewed by another committer.
Every change is merged by another committer.

Always releasable software
Extremely clean commit log

Used by every Big Data project in Apache

C:\s\reef [master]> git log --oneline

b5c807a [REEF-1373] Convert IClock to an interface
6b67524 [REEF-1420] Dispose IGroupCommClient/Network Service from IMRU tasks
af8b908 [REEF-1369] Remove obsolete RuntimeClock.RegisterObserver
f2b9b84 [REEF-1421] Transport Client inner thread is not canceled when the object is
disposed
1a2f120 [REEF-1410] Validate Task constructor failure => FailedTask Event
dbd628a [REEF-1414] Condition to EvaluatorExitLogger is inverted for RuntimeStop
414d4b4 [REEF-1392] Adding IObserver<ICloseEvent> for IMRU tasks
b564736 [REEF-1345] Define IMRU task exceptions
d5a671b [REEF-1403] Deadlock between ContextRuntime.StartTask and
HeartBeatManager.OnNext(Alarm)
f5ae659 [REEF-1306] Remove OnDriverReconnect from parameter in DriverConfiguration
bf5caab [REEF-1396] Fix testFailureRestart to validate that the restarted Evaluators are
received
4c0207e [REEF-1409] Upgrade HDP2.4 docker image to use 2.4.2 repository
947b18e [REEF-1398] Update version to 0.16.0-SNAPSHOT
b495935 [REEF-1400] Update update_website.py script to include pom.xml file

JIRAS, CODE REVIEWS AND COMMITS

Design discussions happen on JIRA (yay!)
People are comfortable and encourage many open JIRAs
Example [MapReduce-279] (YARN) was open for 3.5 years.
Often, the committer closes issue (2nd best option)

Code reviews happen on GitHub
Commit messages link back to both.

Committer who does the merge also rebases to current `master`
Commits are squashed to create a linear commit history
“True history” is preserved on GitHub

https://issues.apache.org/jira/browse/MAPREDUCE-279

COMMIT MESSAGES

Valid Markdown
Link to JIRA
Link to Pull Request
Useful one-line summary

[REEF-1410] Validate Task constructor failure => FailedTask
Event

This addressed the issue by
 * Fixing heartbeat failure if task fails to start.
 * Adding a test to verify Task failure message.

JIRA:
 [REEF-1410](https://issues.apache.org/jira/browse/
REEF-1410)

Pull Request:
 This closes #1019

RELEASES

RELEASE MANAGER
CREATES A BRANCH, BEGS

FOR HELP

MAJORITY OF PMC VOTES,
BECOMES THE NEXT

RELEASE (FOUNDATION
RULE)

VERSION ASSIGNED
DURING THE VOTE

AGENDA

Intro about the ASF The Apache Way

Community choices Next steps

AGENDA

Intro about the ASF The Apache Way

Community choices Next steps

NEXT STEPS

WRITE A PROPOSAL FORM AN INITIAL PMC
AND COMMITTER

GROUP

SEND THE PROPOSAL
TO THE APACHE

INCUBATOR

THANKS FOR
YOUR TIME!

weimer@apache.org

Markus.Weimer@Microsoft.com

@markusweimer

http://markusweimer.com

RESOURCES

https://www.apache.org/foundation/how-it-works.html
https://wiki.apache.org/hadoop/HowToContribute
https://wiki.apache.org/hadoop/HowToCommit
http://www.catb.org/~esr/faqs/smart-questions.html
https://issues.apache.org/jira/browse/HADOOP (YARN/MAPREDUCE/HDFS/...)
http://producingoss.com/ (Karl Fogel, Subversion)
http://www.infoworld.com/article/3079813/open-source-tools/the-apache-foundations-incredible-rise.html

https://www.apache.org/foundation/how-it-works.html
https://wiki.apache.org/hadoop/HowToContribute
https://wiki.apache.org/hadoop/HowToCommit
http://www.catb.org/~esr/faqs/smart-questions.html
https://issues.apache.org/jira/browse/HADOOP
http://producingoss.com/
http://www.infoworld.com/article/3079813/open-source-tools/the-apache-foundations-incredible-rise.html

