
Scalable Distributed Training with 
Parameter Hub:  
a whirlwind tour
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Active Topology 
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Groundwork for bringing TVM to the distributed world for 
training and inference, on commercial cloud, or in your own 

cluster.
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* In the cloud-based training context

Optimized, topology-aware and dynamic mechanism for 
inter-machine communication



Deep Learning constitutes an important workload in cloud 
today.

Major cloud providers all have an ecosystem for cloud 
learning.
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Server demand for DL inference across data centers nearly 
quadrupled in less than 2 years. Source: Facebook
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EC2 reclaims your GPU instances as they run out of capacity
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Distributed Training
INDEPENDENT FORWARD/BACKWARD PASSES + 
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Distributed Training Today
IN THE CONTEXT OF THE CLOUD
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Distributed Training Today
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Distributed training is communication bound
ResNet 269
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- Problem gets worse 
over time: shifting 
bottleneck.

- With modern GPUs 
most of the time is spent 
on communication.

- Making GPUs faster will 
do little to increase 
throughput

- Wasting compute 
resources.  13
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Distributed training is communication bound

Inception V3
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GoogleNet

ResNet 269



Bottlenecks in DDNN training
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MAPPING OF TRAINING WORKLOAD TO THE 
CLOUD IS INEFFICIENT.
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Bottlenecks in DDNN training
FRAMEWORK BOTTLENECKS
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Bottlenecks in DDNN training
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Bottlenecks in DDNN training
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Bottlenecks in Cloud-based DDNN training
INSUFFICIENT BANDWIDTH
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MxNet
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Bottlenecks in Cloud-based DDNN training
INSUFFICIENT BANDWIDTH

 20

25 Gbps

10 Gbps Cloud Bandwidth
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1300 Gbps

GoogleNet / Inception: 40 Gbps

ResNet: 100 Gbps

AlexNet: 1200 Gbps
Minimum bandwidth required 
for each of the popular NNs for 
communication to not 
bottleneck computation?

8 workers, GTX 1080 Ti, 
central parameter servers. 
MxNet



Bottlenecks in Cloud-based DDNN training
MAPPING OF TRAINING WORKLOAD TO THE CLOUD 
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Bottlenecks in Cloud-based DDNN training
DEPLOYMENT-RELATED OVERHEAD
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Bottlenecks in Cloud-based DDNN training
DEPLOYMENT-RELATED OVERHEAD

• Transient congestion, or 
oversubscription by 
design

• Cross-rack 
communication cost is 
higher than Intra-rack 
communication.
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Parameter Hub Optimizations
CODESIGNING SOFTWARE, HARDWARE WITH 
CLUSTER CONFIGURATION FOR EFFICIENT CLOUD-
BASED DDNN TRAINING
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Network 
Core

Eliminating framework bottlenecks: 
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PHub Optimizations: streamlining DDNN training pipeline
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Software Optimizations
GRADIENT AGGREGATION AND OPTIMIZATION

Each core reads the input Q 
from different workers and 

writes to different locations to 
the output queue

For each input Q, launch a 
series of threads for 

aggregation. This is used in 
MxNet. (Wide Aggregation)

Requires synchronization. Great locality. No synchronization

Sequentially aggregates the 
same portion of gradients 
within each queue. (Tall 

Aggregation)

Organize processors into 
hierarchy. Perform NUMA 

aware tree reduction.

NUMA 0 NUMA 1

Great locality. No synchronization Too much coherence and 
synchronization
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Software Optimizations
TALL AGGREGATION AND OPTIMIZATION

- Chunk a gradient into a series of virtual 
gradients deterministically.

- A virtual gradient is mapped to a 
particular core on the server.

Gradient Array for Key 0 from 8 workers
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Software Optimizations
TALL AGGREGATION AND OPTIMIZATION

- Chunk a gradient into a series of virtual 
gradients deterministically.

- A virtual gradient is mapped to a 
particular core on the server.

- Virtual gradients are transferred 
independently.

- A chunk is only processed by a single 
core : maintaining maximum locality.
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Software Optimizations
TALL AGGREGATION AND OPTIMIZATION

When Aggregation is done, PHub:
- PHub optimizes a chunk with the same 

core that aggregates that chunk.
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Network 
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Eliminating deployment bottlenecks: 
PHub hierarchical reduction: reducing cross rack traffic
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Two-Phase Hierarchical Aggregation
RACK SCALE PARAMETER SERVICE
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Two-Phase Hierarchical Aggregation
ADAPTING TO THE DATACENTER NETWORK TOPOLOGY
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Two-Phase Hierarchical Aggregation
ADAPTING TO THE DATACENTER NETWORK TOPOLOGY
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Aggregator Aggregator1. Intra-Rack central 
aggregation

2. Inter-Rack 
aggregation

N times traffic 
reduction!
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Efficient DDNN Training in Commercial Cloud
ACTIVE TOPOLOGY PROBING

VMs
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Performance in commercial cloud with 
PHub
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Windows Azure and Amazon EC2. 32 instances. Up to 10 Gbps. Standard_NC6: Nvidia 
K80. Batch Size = 512. P3.2xLarge: Nvidia V100. Batch Size = 512. Facebook Caffe2/

Pytorch. ResNet 50.
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Framework Integration
Support for Mxnet/Pytorch/Caffe2.

var pHub = std::make_shared<PHub>(cfg.redisIp, nMap, keySize, appAddrs, cntr, 
sizeof(float), cfg.rank, plp);
pHub->ToggleUseSchedule(pSchedule);
pHub->Reduce();



Optimization

Active Topology 
ProbingYour Cloud

Groundwork for bringing TVM to the distributed world for 
training and inference, on commercial cloud, or in your own 

cluster.
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Hardware 
Parameter Hub
Balanced computation and 
communication resource.

- 10 ConnectX-3 Card
- 560+Gbps Network BW
- 800Gbps PCIe
- Fully supported by Software 

Parameter Hub



Hardware 
Parameter Hub
35GB/s aggregation throughput.
Supports 100+ ResNet-50 
training nodes with a single 
machine.

Gloo HD Gloo Ring PS-Lite PHub SW

2

4.55
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Hardware 
Parameter Hub
ResNet-50.
See paper for detailed estimates.

Better training throughput/$.
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