


TVM @ FB

Andrew Tulloch
Research Scientist



• Excited to be here!
• Lots of FB folks in the audience
• Working in TVM since ~June
• Focusing on apply TVM to accelerate ML inference 

on CPUs/GPUs across mobile and server 
environments

Background



• Rapidly growing in terms of capacity requirements
• Two key workloads are:

• ranking/recommendation (feed and ads ranking)
• computer vision (classification, detection, OCR, 

video, etc)
• For various reasons, mostly leverage various 

generations of Intel CPUs

Server ML Workloads @ FB
https://arxiv.org/abs/1811.09886 for more detail

https://arxiv.org/abs/1811.09886


Source: https://arxiv.org/abs/1811.09886

https://arxiv.org/abs/1811.09886


• Main workloads are real-time computer vision 
workloads (object detection, tracking, segmentation, 
etc.)

• Huge variety of computational platforms to target 
(ARMv7/Aarch64 CPUs, Metal/OpenGL GPUs, 
Hexagon DSPs, ...)

• Introduces new constraints (esp: code size)

Mobile ML Workloads @ FB
See upcoming HPCA-2019 publication



Source: sed ut unde omnis



Mask-RCNN



Mask-RCNN



Object Detection



Object Detection



• More hardware (NPUs, TPUs, GPUs, DSPs, ...)
• More numerics (fp32, fp16/bfloat16, int8, int1, ...)
• FLOPs/BW ratio increasing, exposing inefficiencies
• Existing approaches (manual fusion, etc) 

unsustainable

Why TVM (for us)?



Improving TVM @ FB



TVM for Server CV
https://discuss.tvm.ai/t/improved-direct-winograd-nchwc-cpu-
implementation-with-resnet-50-results/
• First workload we targeted, great fit
• Goal was to beat current FP32 production baselines 

(MKL-DNN)
• Key improvements:

• Entire graph in NCHWc (no graph tuner)
• Implement efficient NCHWc Winograd (https://

github.com/dmlc/tvm/pull/2111)
• Portable/generic performance

https://github.com/dmlc/tvm/pull/2111
https://github.com/dmlc/tvm/pull/2111


Source: sed ut unde omnis



Source: sed ut unde omnis



• Next, targeted proving we could beat our mobile CV 
models - highly optimized baseline

• Tensorization + custom layout to compete with 
NNPACK FP16 WT

• Leverage TVM for pointwise fusion, certain 
convolutions, fall back to baseline for other ops

• Replace runtime::ThreadPool with custom 
implementation

TVM for Mobile CV
https://discuss.tvm.ai/t/tvm-nnpack-performance-on-unet-
armv7/1134



Source: sed ut unde omnis



• Architectures similar to e.g. Wide and Deep 
Networks, Deep Factorization Machines, etc.

• O(many trillions) of inferences/day.
• Mixture of sparse subgraphs (embedding lookups, 

pooling, pairwise products, etc), and dense 
subgraphs (fully-connected)

• New NNVM ops: sparse_lengths_sum, 
batch_gather, batch_matmul, AutoTVM dense, etc.

TVM for Server Ranking 
https://github.com/ajtulloch/tvm/tree/sparse-ops



Source: sed ut unde omnis



Source: sed ut unde omnis



Some incremental ideas



• Quantization (int8 and lower)
• Highly tuned ukernels in FBGEMM (AVX2/AVX512) 

and QNNPACK (ARM NEON) could be useful.
• Constrained dynamism for shapes (codegen, 

runtime).
• batch size in ranking
• sentence length in NLP
• spatial dimensions in FCNs

TVM Core
For discussion with community



• OpenGL ES 3.2+ backend for mid/high-end Android 
GPUs

• Hexagon backend
• "Interpreter bundling" for highly code-size-

constrained applications
• Ultra-low-precision backend (1/2/4 bit W/A)

• Lots of exciting new research in mixed precision 
graphs, new ULP training methods, etc.

TVM Mobile
For discussion with community


