facebook

TVM @ FB

Andrew Tulloch
Research Scientist

Background

- Excited to be here!

- Lots of FB folks in the audience

- Working in TVM since ~June

- Focusing on apply TVM to accelerate ML inference
on CPUs/GPUs across mobile and server
environments

Server ML Workloads @ FB

https://arxiv.org/abs/1811.09886 for more detall

- Rapidly growing in terms of capacity requirements
- Two key workloads are:
* ranking/recommendation (feed and ads ranking)
- computer vision (classification, detection, OCR,
video, etc)
* For various reasons, mostly leverage various
generations of Intel CPUs

https://arxiv.org/abs/1811.09886

4x

3X

2X

1x

0
¥Y1Q3 Y10Q4 Y2Ql Y2Q2 Y2043 Y2Q4 ¥Y3Ql Y3 Q2

Figure 1: Server demand for DL inference across data centers

Source: https://arxiv.org/abs/1811.09886

https://arxiv.org/abs/1811.09886

Mobile ML Workloads @ FB

See upcoming HPCA-2019 publication

* Main workloads are real-time computer vision
workloads (object detection, tracking, segmentation,
etc.)

* Huge variety of computational platforms to target
(ARMv7/Aarch64 CPUs, Metal/OpenGL GPUs,
Hexagon DSPs, ...)

- Introduces new constraints (esp: code size)

2011
2012

2005-2010

CDF of SoCs

2015+

ST T E
S E E T

0.0

500 750 1000 1250 1500 1750 2000 2013-2014

Unique 5oCs Figure 3: The most commonly-used mobile pro-
Figure 2: There is no standard mobile SoC cessors, Cortex A53, are at least six years old. In

to optimize for. The top 50 most common SoCs 2018, only a fourth of smartphones implemented
account for only 65% of the smartphone market. = CPU cores designed in 2013 or later.

N
U1 -
o

0

Mask-RCNN

Mask-RCNN

Tt A
.... ‘.. > .

Object Detection

Tt A
.... ‘.. > .

Object Detection

Why TVM (for us)?

- More hardware (NPUs, TPUs, GPUs, DSPs, ...)

- More numerics (fp32, fp16/bfloat16, Iint8, intd, ...)

- FLOPs/BW ratio increasing, exposing inefficiencies

- EXxisting approaches (manual fusion, etc)
unsustainable

Improving TVM @ FB

TVM for Server CV

https://discuss.tvm.ai/t/improved-direct-winograd-nchwc-cpu-
Implementation-with-resnet-50-results/

- First workload we targeted, great fit
- Goal was to beat current FP32 production baselines
(MKL-DNN)
+ Key improvements:
- Entire graph in NCHWc (no graph tuner)
* Implement efficient NCHWc Winograd (https://

ithub.com/dmlic/tvm/pull/2111)

https://github.com/dmlc/tvm/pull/2111
https://github.com/dmlc/tvm/pull/2111

ResNet-50 latency (bs=1, #threads=1)

175 -

150 -

125 -

— 100 -

Time

75 -

50 -

25 -

TVM (before) MKL-DNN TVM (after) TVM (after + Winograd)

30 -

25 -

10 -

MKL-DNN

Segmentation UNet latency (bs=1, #threads=1)

TVM (before)

TVM (after)

TVM for Mobile CV

https://discuss.tvm.ali/t/tvm-nnpack-performance-on-unet-
armv//1134

- Next, targeted proving we could beat our mobile CV
models - highly optimized baseline

- Tensorization + custom layout to compete with
NNPACK FP16 WT

+ Leverage TVM for pointwise fusion, certain
convolutions, fall back to baseline for other ops

- Replace runtime::ThreadPool with custom

350 -

300 -

250 -

100 -

50 -

(before)

UNet Cortex-A53 latency (#threads=1)

(+ FP16 Winograd) VM (after) TVM (after + FP16 Winograd)

TVM for Server Ranking

https://github.com/ajtulloch/tvm/tree/sparse-ops

+ Architectures similar to e.g. Wide and Deep
Networks, Deep Factorization Machines, etc.

- O(many trillions) of inferences/day.

- Mixture of sparse subgraphs (embedding lookups,
pooling, pairwise products, etc), and dense
subgraphs (fully-connected)

* New NNVM ops: sparse_lengths_sum,

NNs

T

Interactions

e
A

NNs

v
"
a

/ =1
l | -
-
S
—
=
“—es v
A f f k>
‘ - E
W
dense features sparse features

Figure 2: A deep learning recommendation model

Time (normalized)

(o)

=~

w

SKL Ranking latency (#threads=1)

8
Batch Size

Backend

Some incremental ideas

TVM Core

For discussion with community

- Quantization (int8 and lower)
- Highly tuned ukernels in FBGEMM (AVX2/AVX512)
and QNNPACK (ARM NEON) could be useful.
- Constrained dynamism for shapes (codegen,
runtime).
* batch size in ranking
- sentence length in NLP

TVM Mobile

For discussion with community

- OpenGL ES 3.2+ backend for mid/high-end Android
GPUs
- Hexagon backend
- "Interpreter bundling" for highly code-size-
constrained applications
- Ultra-low-precision backend (1/2/4 bit W/A)
- Lots of exciting new research in mixed precision

