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Background

- Excited to be here!

- Lots of FB folks in the audience

- Working in TVM since ~June

- Focusing on apply TVM to accelerate ML inference
on CPUs/GPUs across mobile and server
environments



Server ML Workloads @ FB

https://arxiv.org/abs/1811.09886 for more detall

- Rapidly growing in terms of capacity requirements
- Two key workloads are:
* ranking/recommendation (feed and ads ranking)
- computer vision (classification, detection, OCR,
video, etc)
* For various reasons, mostly leverage various
generations of Intel CPUs


https://arxiv.org/abs/1811.09886

4x

3X

2X

1x

0
¥Y1Q3 Y10Q4 Y2Ql Y2Q2 Y2043 Y2Q4 ¥Y3Ql Y3 Q2

Figure 1: Server demand for DL inference across data centers

Source: https://arxiv.org/abs/1811.09886



https://arxiv.org/abs/1811.09886

Mobile ML Workloads @ FB

See upcoming HPCA-2019 publication

* Main workloads are real-time computer vision
workloads (object detection, tracking, segmentation,
etc.)

* Huge variety of computational platforms to target
(ARMv7/Aarch64 CPUs, Metal/OpenGL GPUs,
Hexagon DSPs, ...)

- Introduces new constraints (esp: code size)
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Why TVM (for us)?

- More hardware (NPUs, TPUs, GPUs, DSPs, ...)

- More numerics (fp32, fp16/bfloat16, Iint8, intd, ...)

- FLOPs/BW ratio increasing, exposing inefficiencies

- EXxisting approaches (manual fusion, etc)
unsustainable



Improving TVM @ FB



TVM for Server CV

https://discuss.tvm.ai/t/improved-direct-winograd-nchwc-cpu-
Implementation-with-resnet-50-results/

- First workload we targeted, great fit
- Goal was to beat current FP32 production baselines
(MKL-DNN)
+ Key improvements:
- Entire graph in NCHWc (no graph tuner)
* Implement efficient NCHWc Winograd (https://

ithub.com/dmlic/tvm/pull/2111)


https://github.com/dmlc/tvm/pull/2111
https://github.com/dmlc/tvm/pull/2111
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TVM for Mobile CV

https://discuss.tvm.ali/t/tvm-nnpack-performance-on-unet-
armv//1134

- Next, targeted proving we could beat our mobile CV
models - highly optimized baseline

- Tensorization + custom layout to compete with
NNPACK FP16 WT

+ Leverage TVM for pointwise fusion, certain
convolutions, fall back to baseline for other ops

- Replace runtime::ThreadPool with custom
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TVM for Server Ranking

https://github.com/ajtulloch/tvm/tree/sparse-ops

+ Architectures similar to e.g. Wide and Deep
Networks, Deep Factorization Machines, etc.

- O(many trillions) of inferences/day.

- Mixture of sparse subgraphs (embedding lookups,
pooling, pairwise products, etc), and dense
subgraphs (fully-connected)

* New NNVM ops: sparse_lengths_sum,
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Figure 2: A deep learning recommendation model
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Some incremental ideas




TVM Core

For discussion with community

- Quantization (int8 and lower)
- Highly tuned ukernels in FBGEMM (AVX2/AVX512)
and QNNPACK (ARM NEON) could be useful.
- Constrained dynamism for shapes (codegen,
runtime).
* batch size in ranking
- sentence length in NLP



TVM Mobile

For discussion with community

- OpenGL ES 3.2+ backend for mid/high-end Android
GPUs
- Hexagon backend
- "Interpreter bundling" for highly code-size-
constrained applications
- Ultra-low-precision backend (1/2/4 bit W/A)
- Lots of exciting new research in mixed precision



