TVM @ FB

Andrew Tulloch
Research Scientist
Excited to be here!

Lots of FB folks in the audience

Working in TVM since ~June

Focusing on apply TVM to accelerate ML inference on CPUs/GPUs across mobile and server environments
Server ML Workloads @ FB
https://arxiv.org/abs/1811.09886 for more detail

- Rapidly growing in terms of capacity requirements
- Two key workloads are:
 - ranking/recommendation (feed and ads ranking)
 - computer vision (classification, detection, OCR, video, etc)
- For various reasons, mostly leverage various generations of Intel CPUs
Figure 1: Server demand for DL inference across data centers

Source: https://arxiv.org/abs/1811.09886
Mobile ML Workloads @ FB

See upcoming HPCA-2019 publication

- Main workloads are real-time computer vision workloads (object detection, tracking, segmentation, etc.)
- Huge variety of computational platforms to target (ARMv7/Aarch64 CPUs, Metal/OpenGL GPUs, Hexagon DSPs, ...)
- Introduces new constraints (esp: code size)
Figure 2: There is no standard mobile SoC to optimize for. The top 50 most common SoCs account for only 65% of the smartphone market.

Figure 3: The most commonly-used mobile processors, Cortex A53, are at least six years old. In 2018, only a fourth of smartphones implemented CPU cores designed in 2013 or later.
Mask-RCNN
Mask-RCNN
Object Detection
Object Detection
Why TVM (for us)?

- More hardware (NPUs, TPUs, GPUs, DSPs, ...)
- More numerics (fp32, fp16/bfloat16, int8, int1, ...)
- FLOPs/BW ratio increasing, exposing inefficiencies
- Existing approaches (manual fusion, etc) unsustainable
Improving TVM @ FB
TVM for Server CV

• First workload we targeted, great fit
• Goal was to beat current FP32 production baselines (MKL-DNN)
• Key improvements:
 • Entire graph in NCHWc (no graph tuner)
 • Implement efficient NCHWc Winograd (https://github.com/dmlc/tvm/pull/2111)
Segmentation UNet latency (bs=1, #threads=1)
TVM for Mobile CV

https://discuss.tvm.ai/t/tvm-nnpack-performance-on-unet-armv7/1134

- Next, targeted proving we could beat our mobile CV models - highly optimized baseline
- Tensorization + custom layout to compete with NNPACK FP16 WT
- Leverage TVM for pointwise fusion, certain convolutions, fall back to baseline for other ops
- Replace runtime::ThreadPool with custom
TVM for Server Ranking

https://github.com/ajtulloch/tvm/tree/sparse-ops

- Architectures similar to e.g. Wide and Deep Networks, Deep Factorization Machines, etc.
- $O(\text{many trillions})$ of inferences/day.
- Mixture of sparse subgraphs (embedding lookups, pooling, pairwise products, etc), and dense subgraphs (fully-connected)
- New NNVM ops: sparse_lengths_sum, batch_gather, batch_matmul, AutoTVM dense, etc.
Figure 2: A deep learning recommendation model
Some incremental ideas
TVM Core
For discussion with community

- Quantization (int8 and lower)
- Highly tuned ukernels in FBGEMM (AVX2/AVX512) and QNNPACK (ARM NEON) could be useful.
- Constrained dynamism for shapes (codegen, runtime).
- Batch size in ranking
- Sentence length in NLP
TVM Mobile
For discussion with community

- OpenGL ES 3.2+ backend for mid/high-end Android GPUs
- Hexagon backend
- "Interpreter bundling" for highly code-size-constrained applications
- Ultra-low-precision backend (1/2/4 bit W/A)
- Lots of exciting new research in mixed precision graphs, new ULP training methods, etc.