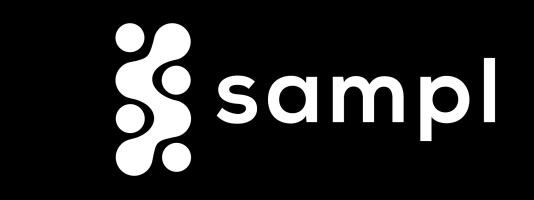
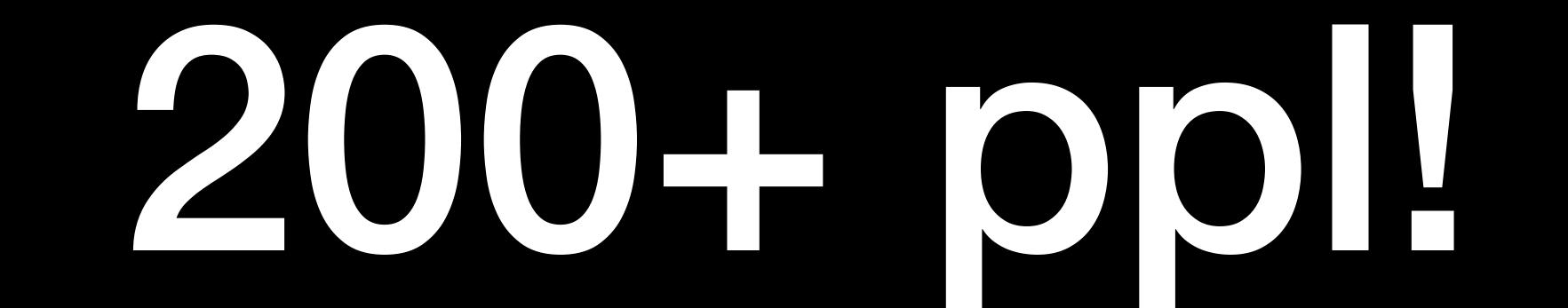
2nd TVM and Deep Learning Compilation Conference Sampl PAUL G. AΙ SCHUUE December 5, 2019

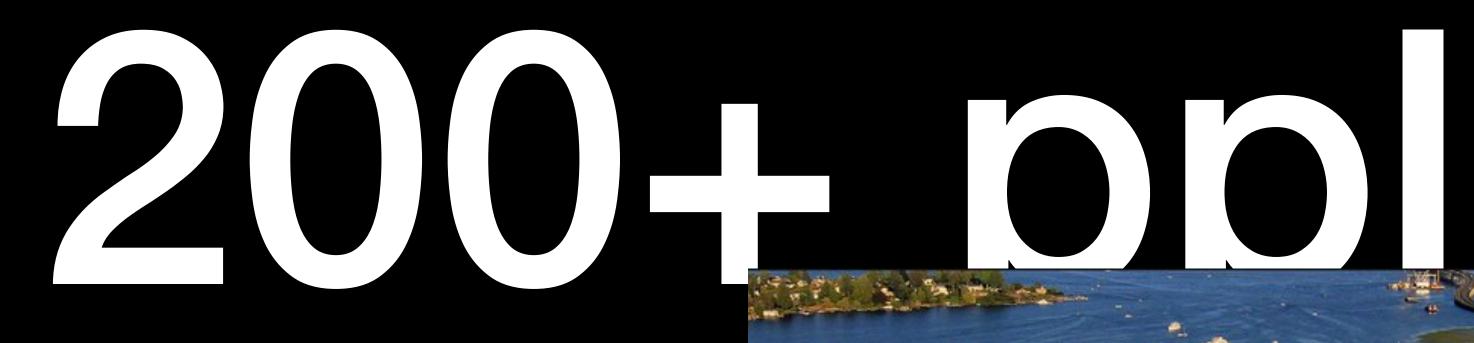


Welcome to the 1st 2nd TVM and Deep Learning Compilation Conference!

Welcome to the 1st 2nd TVM and Deep Learning Compilation Conference!



Welcome to the 1st 2nd TVM and Deep Learning Compilation Conference!



2020

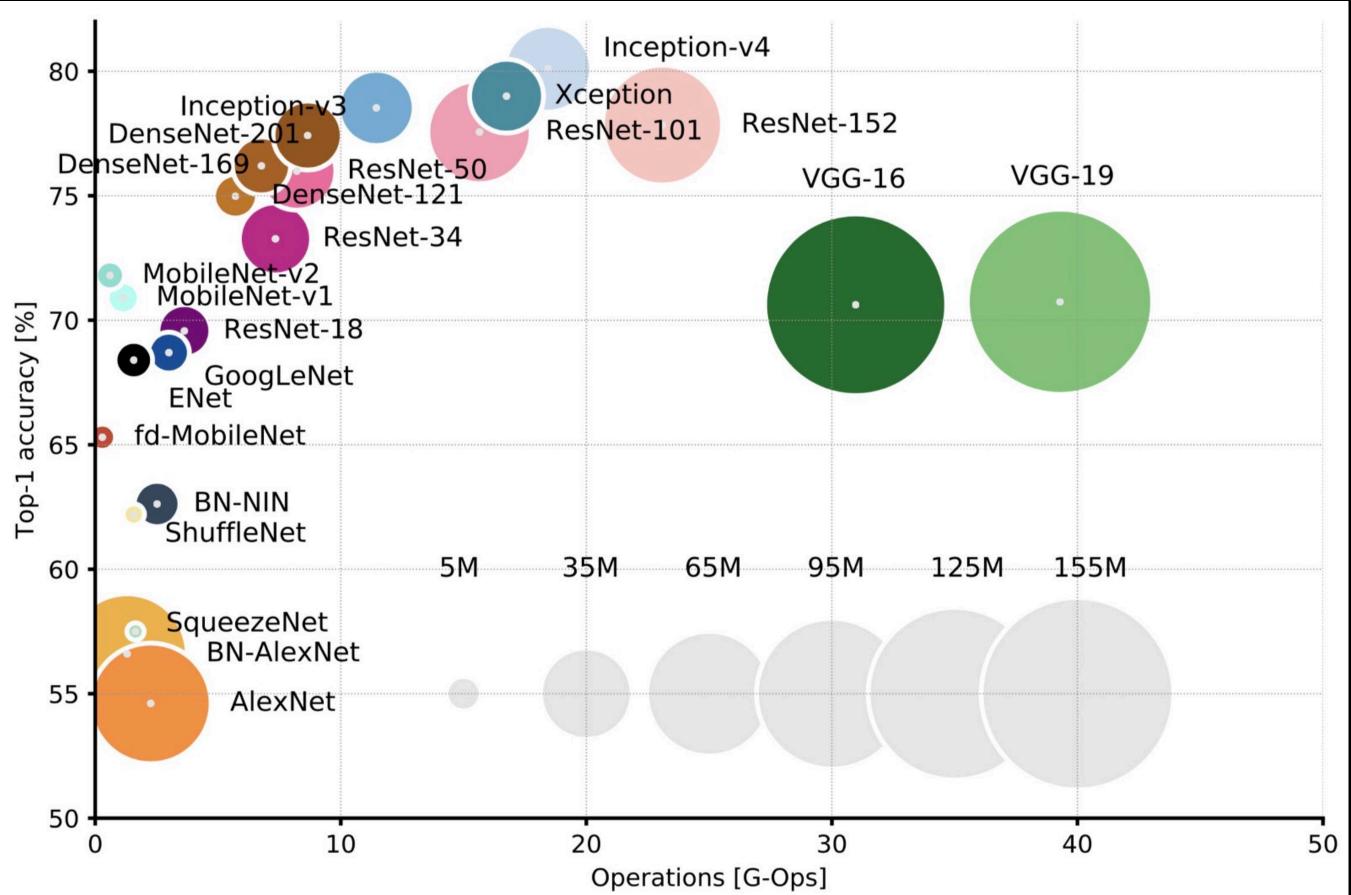
Problem to solve

Train on *fa\$te\$t* machine

Inference on fast & cheap enough machine

Problem to solve

Model size and compute cost growing fast



by Eugenio Culurciello

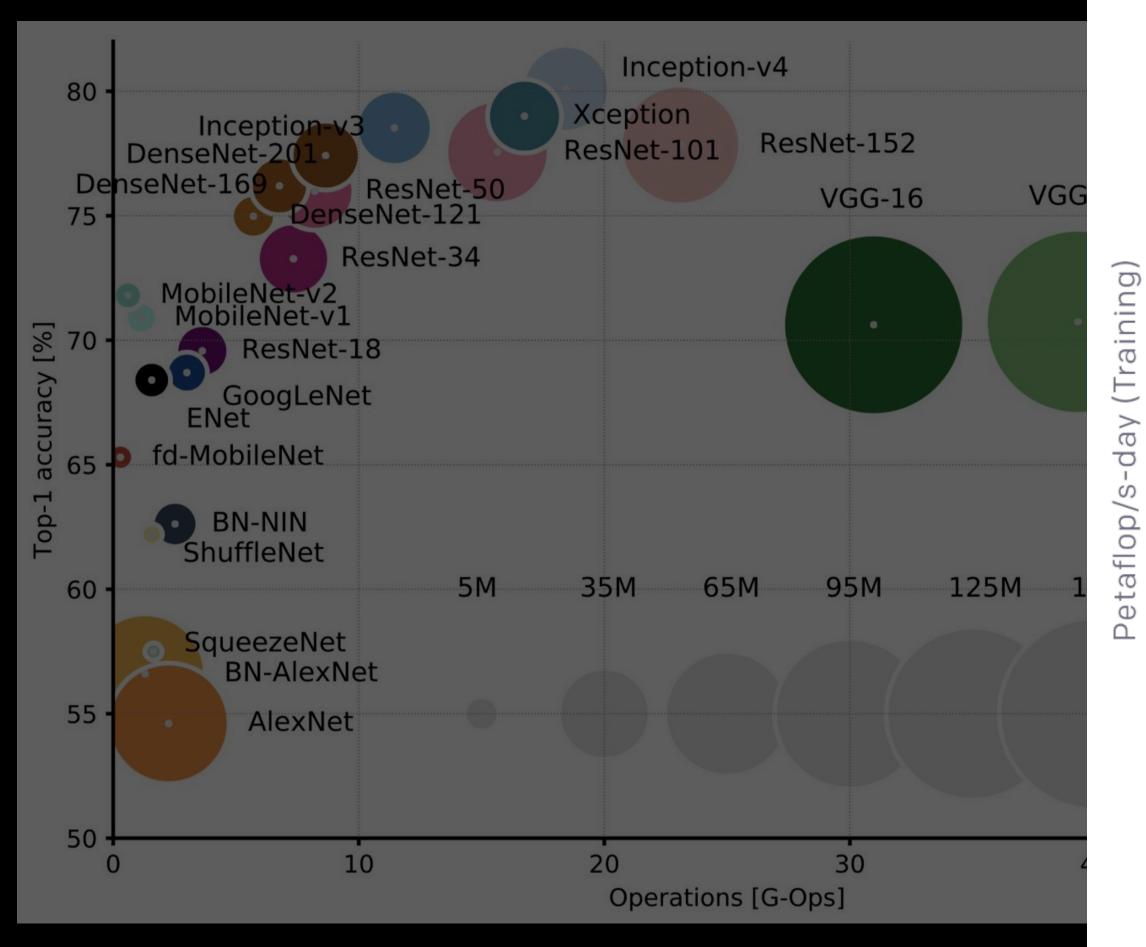
Data + model templates

Train on *fa\$te\$t* machine

Inference on fast & cheap enough machine

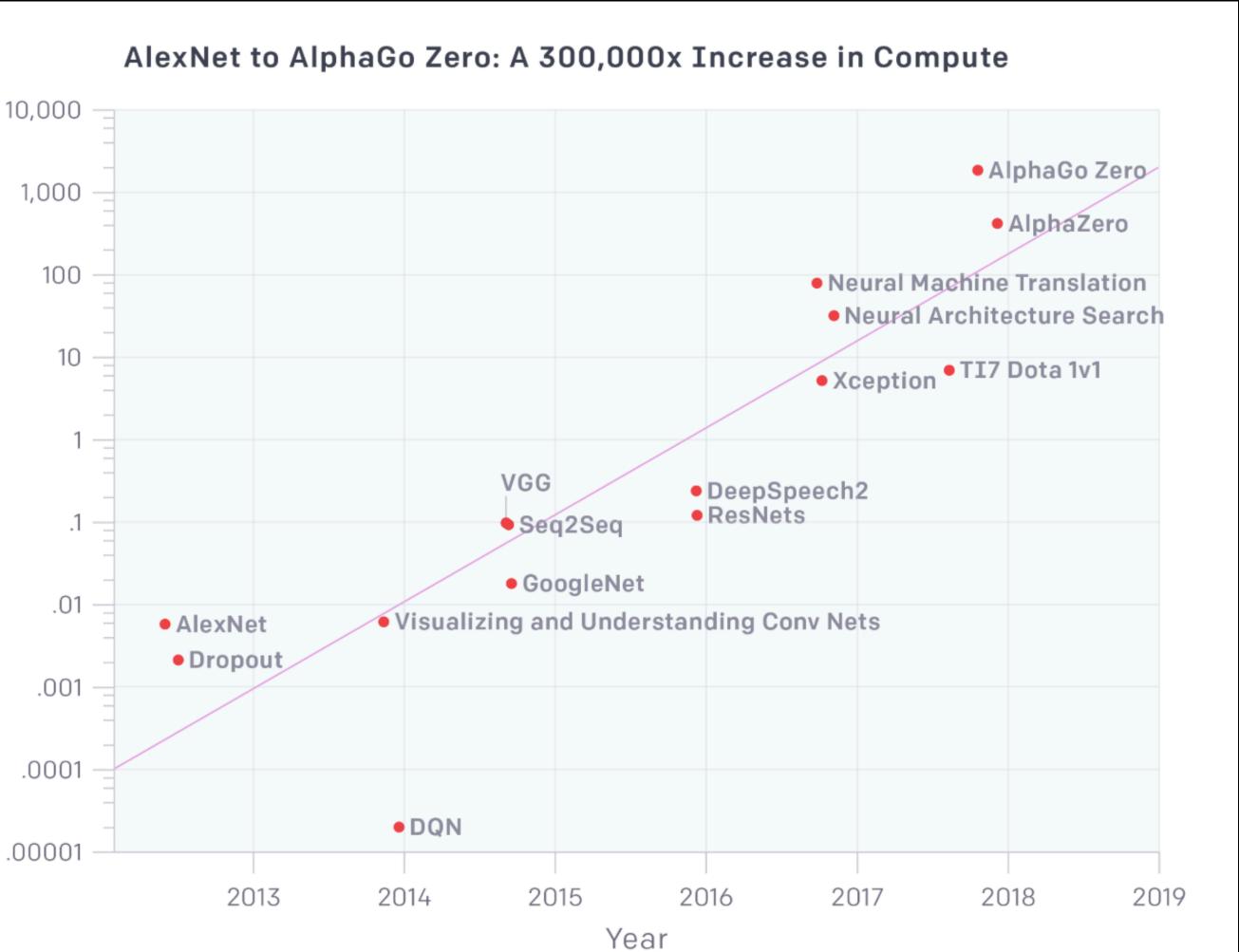
Problem to solve

Model size and compute cost growing fast



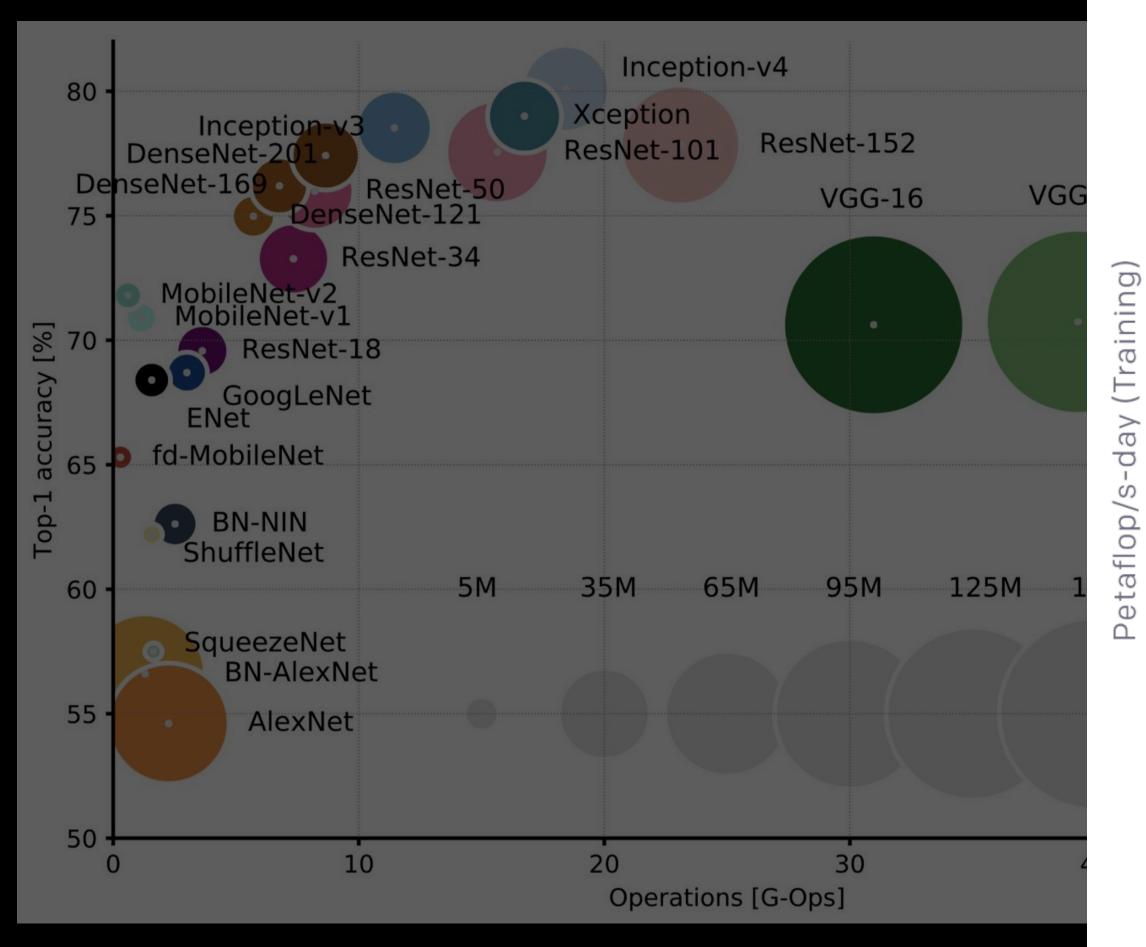
Train on fa\$te\$t machine

Training costs growing exponentially



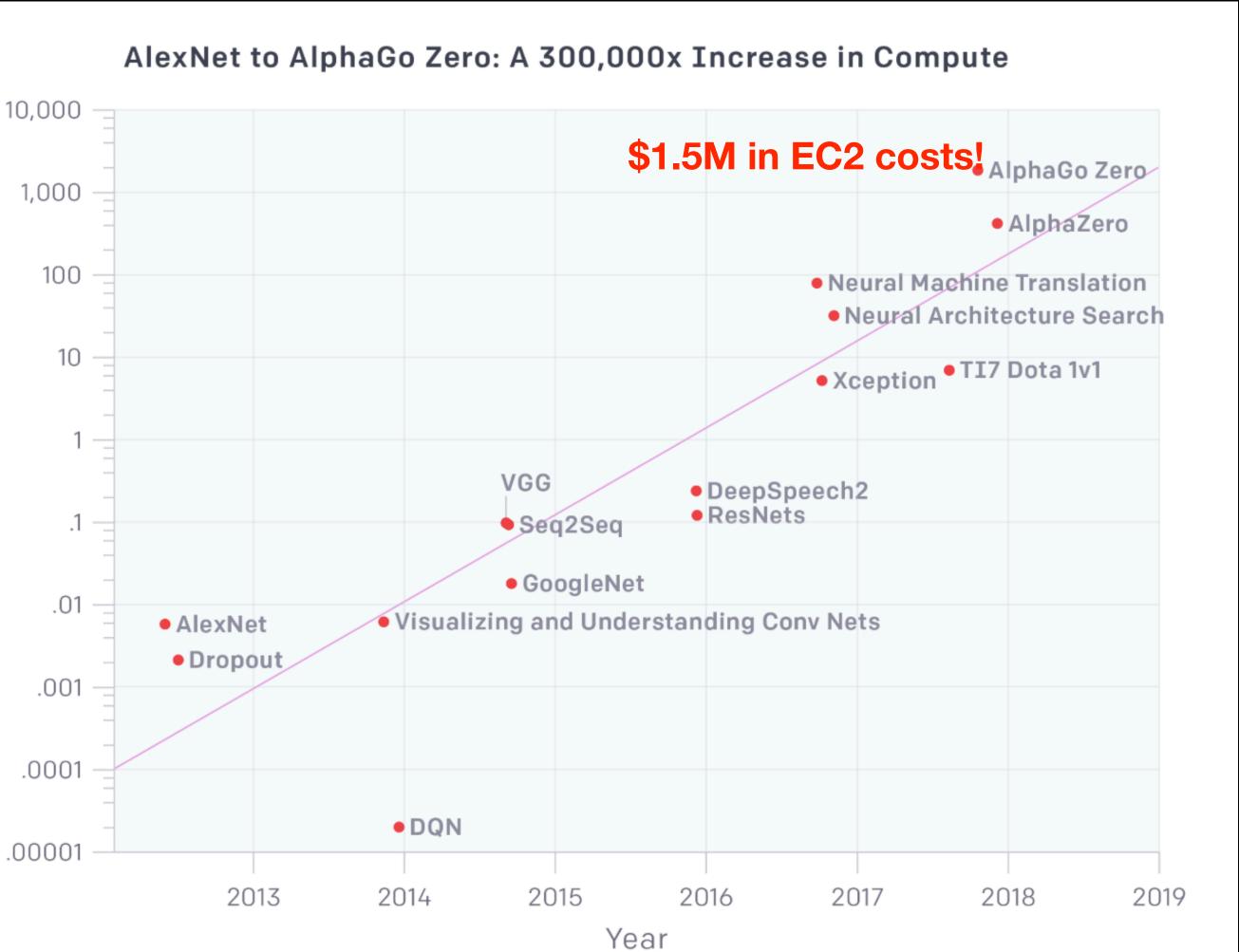
Problem to solve

Model size and compute cost growing fast



Train on *fa\$te\$t* machine

Training costs growing exponentially



Problem to solve

Model size and compute cost growing fast



1

Train on *fa\$te\$t* machine

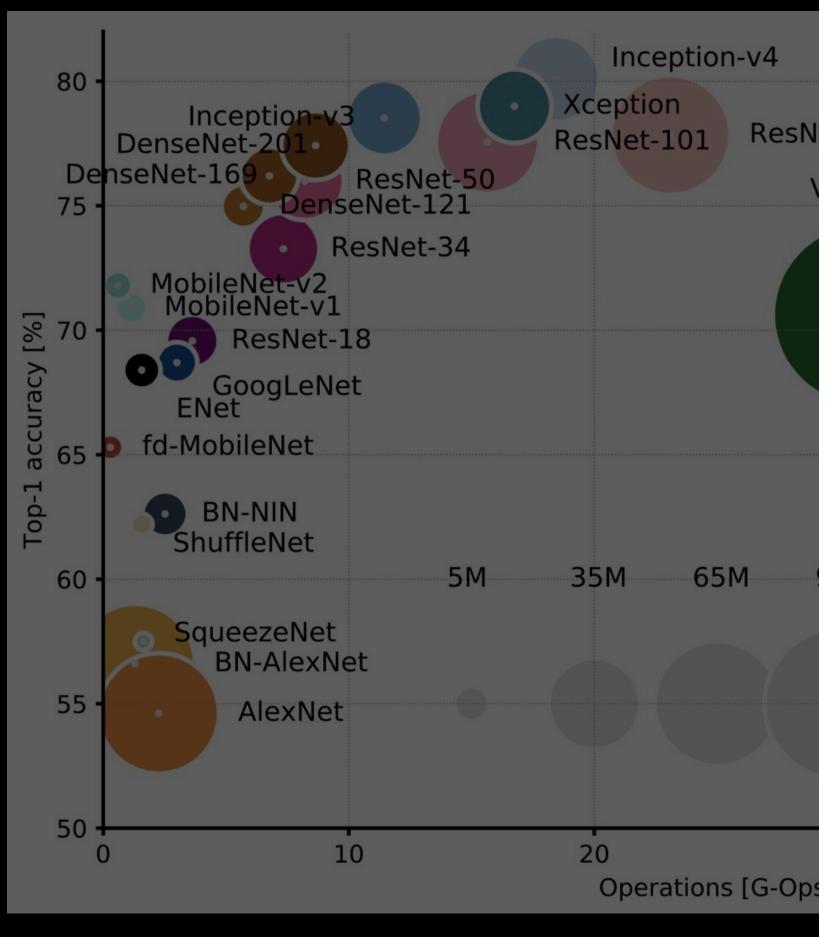
Inference on fast & cheap enough machine

Training costs growing exponentially

Problem to solv

MI Technology Review

Model size and compute cost grow



Training a single Al model can emit as much carbon as five cars in their lifetimes

Deep learning has a terrible carbon footprint.

by Karen Hao

The artificial-intelligence industry is often compared to the oil industry: once mined and refined, data, like oil, can be a highly lucrative commodity. Now it seems the metaphor may extend even further. Like its fossil-fuel counterpart, the process of deep learning by Open Al

by Eugenio Culurciello

Jun 6, 2019

Inference on fast & cheap enough machine

ntially

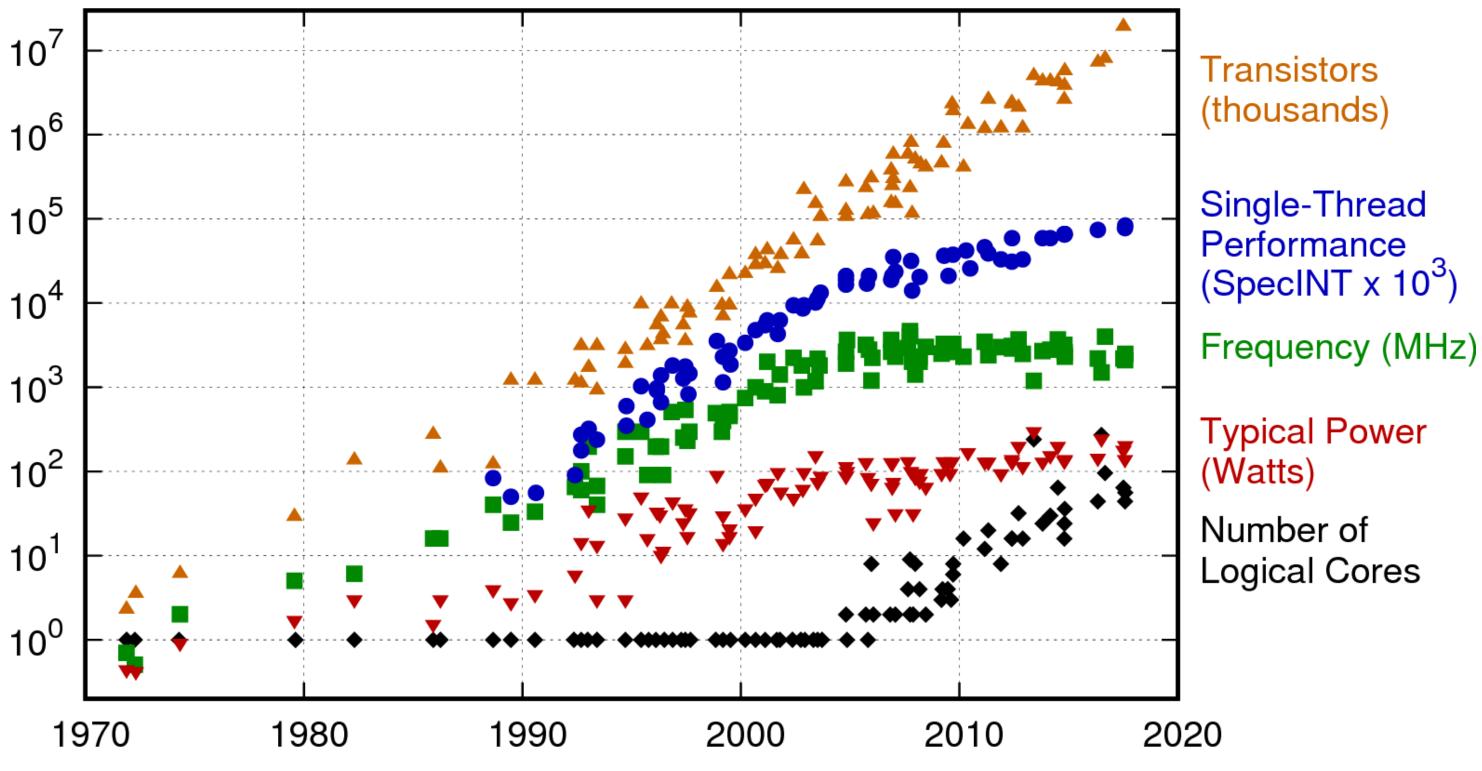
Increase in Compute

5M in EC2 costs! AlphaGo Zero

ind mildew in the pipes sold last month for \$1.23 million.



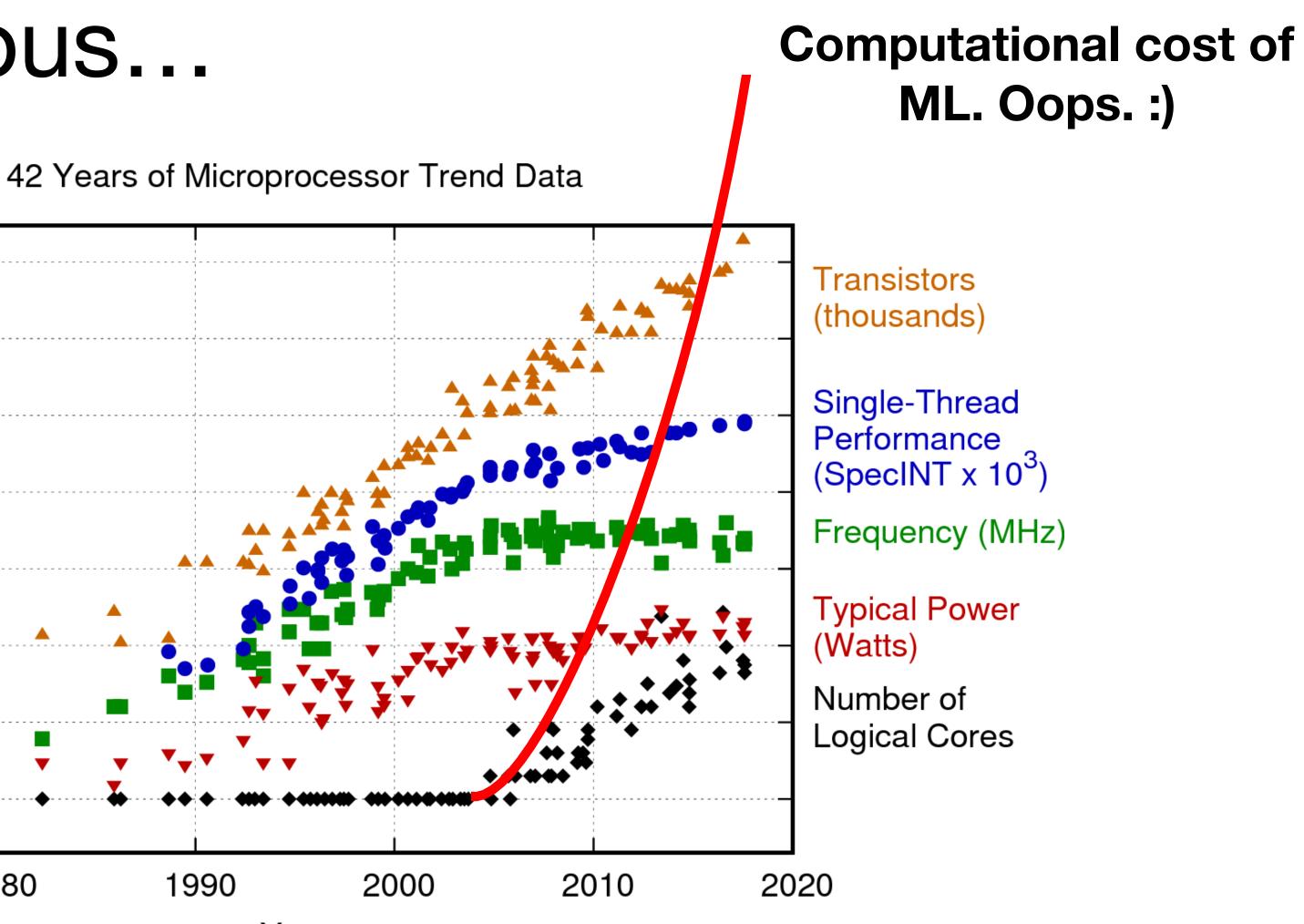
It gets more serious...

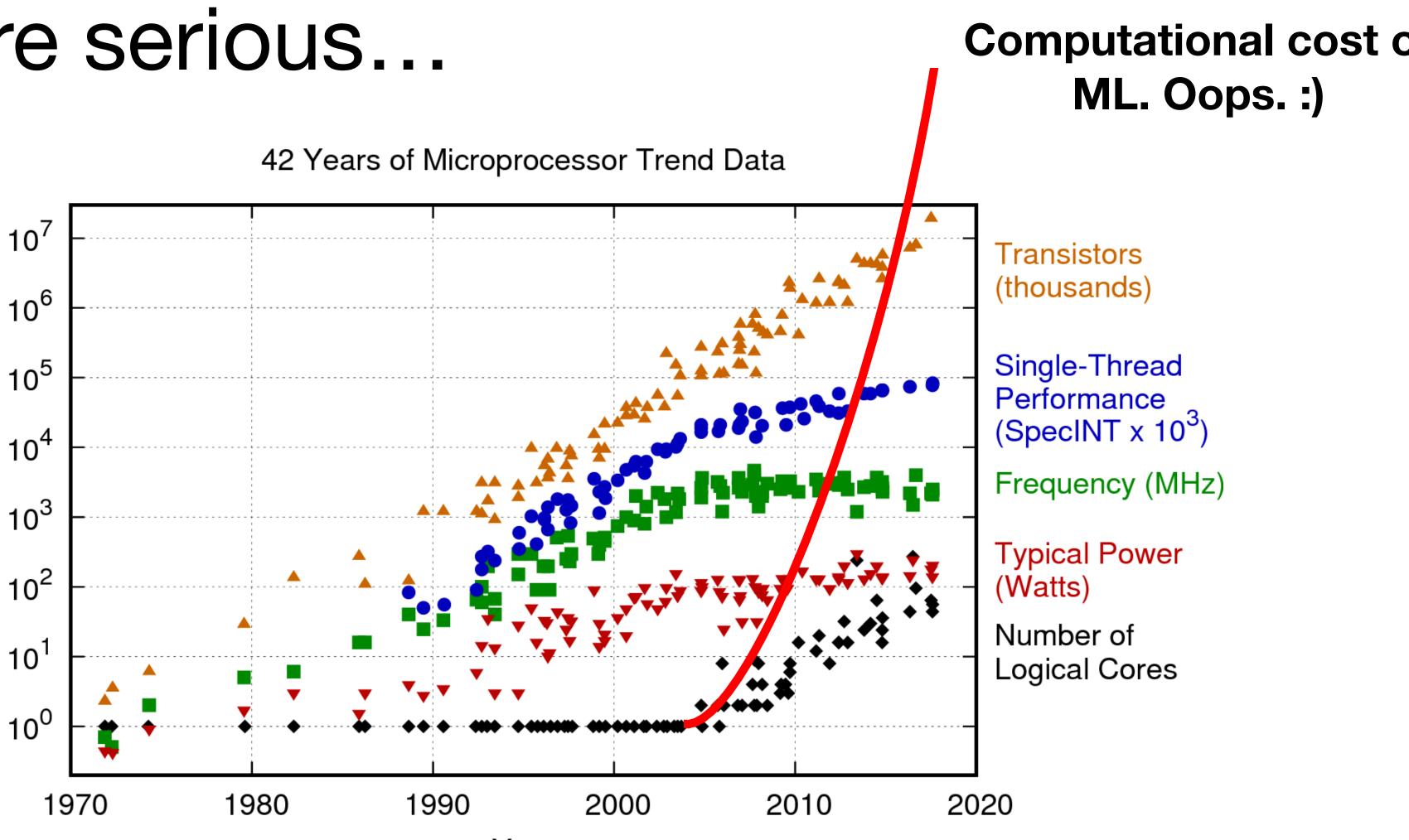


Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2017 by K. Rupp

42 Years of Microprocessor Trend Data

It gets more serious...





Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2017 by K. Rupp

Impact of ML will be limited if we don't squeeze as much efficiency as we can!

Impact of ML will be limited if we don't squeeze as much efficiency as we can!

Model, SW and HW optimization are key...

Cambrian explosion of models, workloads, and use cases.

CNN

RNN DQNN GAN MLP

Growing set of requirements: cost, latency, power, security & privacy

CNN

Cambrian explosion of models, workloads, and use cases.

GAN RNN MLP DQNN

Growing set of requirements: cost, latency, power, security & privacy

Cambrian explosion of models, workloads, and use cases.

Silicon scaling limitations (Dennard and Moore):

Cambrian explosion of HW backends. Heterogeneous HW.

CNN

RNN DQNN GAN MLP

Growing set of requirements: cost, latency, power, security & privacy

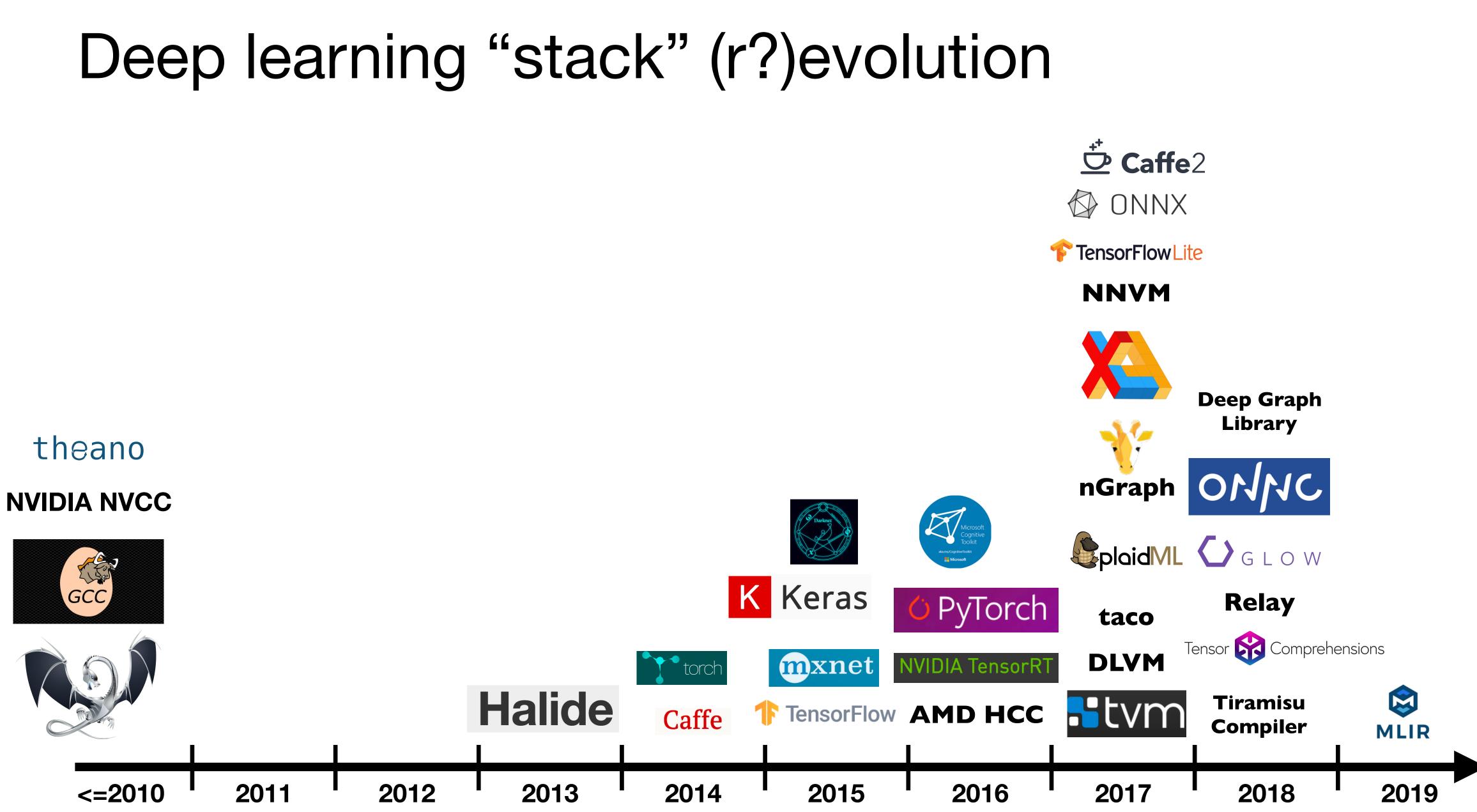
Cambrian explosion of models, workloads, and use cases.

Rapidly evolving ML software ecosystem quickly fragmenting

Silicon scaling limitations (Dennard and Moore):

Cambrian explosion of HW backends. Heterogeneous HW.



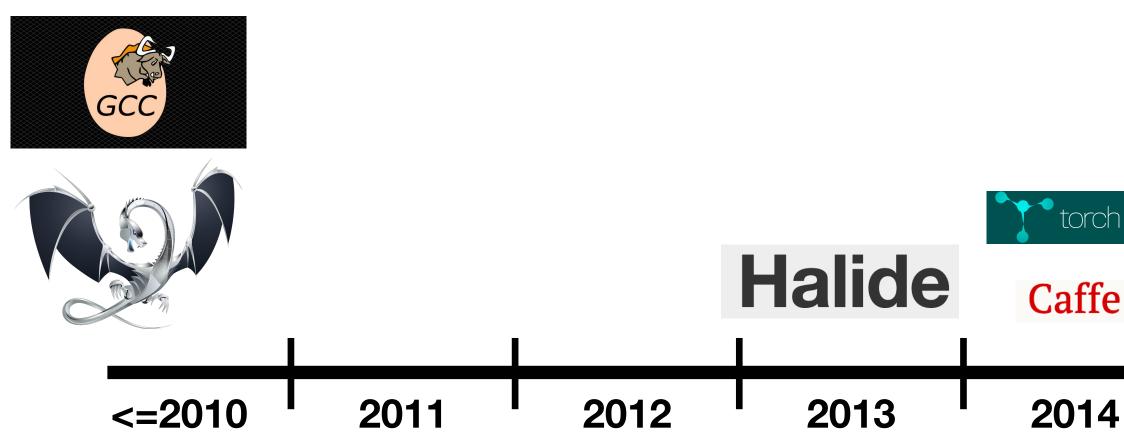


year of introduction

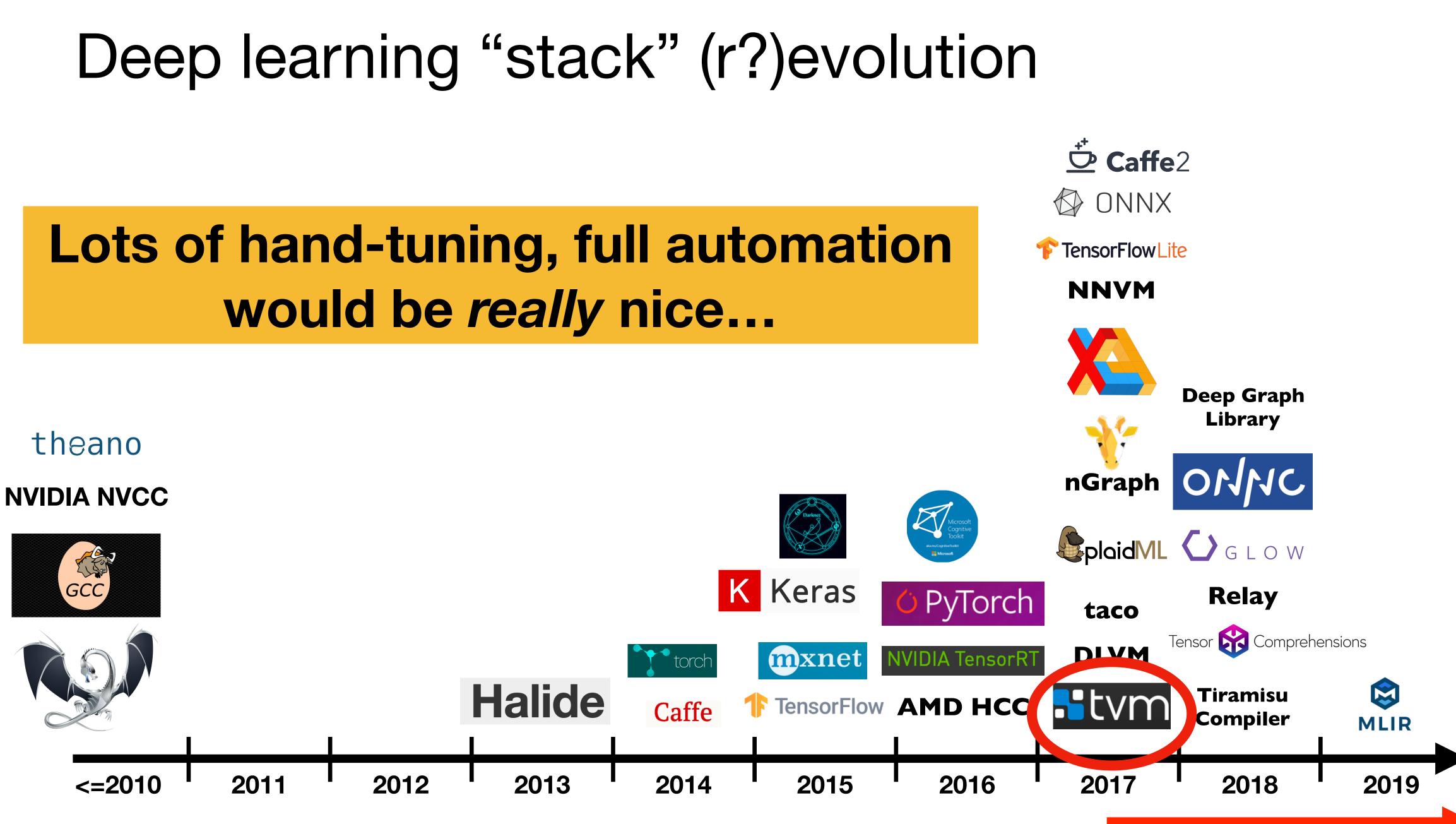
Caffe2 ONNX ONNX F TensorFlow Lite **NNVM** would be *really* nice... **Deep Graph** Library nGraph ONNC **SplaidML S**LOW K Keras Relay PyTorch taco Tensor 🔀 Comprehensions DLVM mxnet VIDIA TensorR1 torch Halide **-**tvm Tiramisu TensorFlow **AMD HCC** Caffe Compiler **MLIR** 2013 2012 2011 2014 2015 2016 2017 2018 2019

Deep learning "stack" (r?) evolution Lots of hand-tuning, full automation **NVIDIA NVCC** GCC <=2010

theano



year of introduction

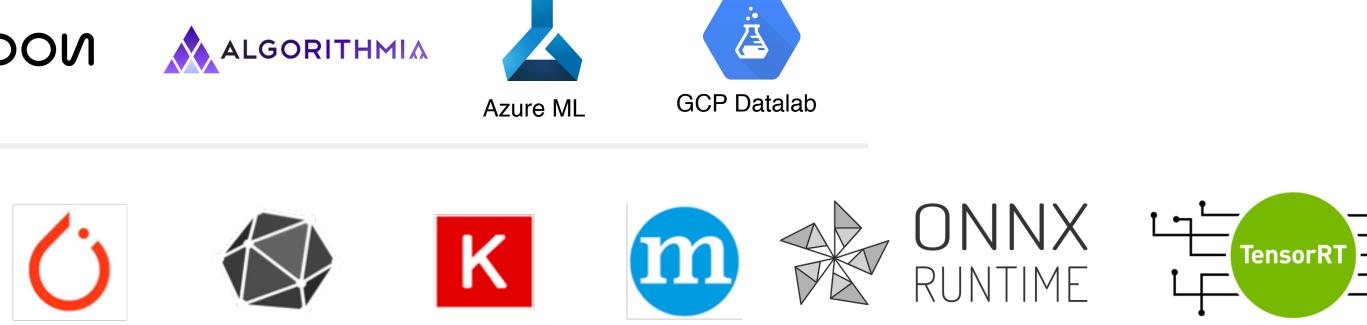


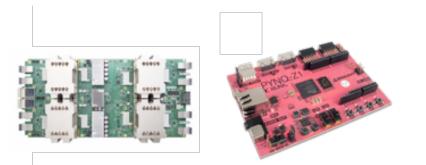
year of introduction

Current Dominant Deep Learning Systems Landscape

Orchestrators **Kubeflow** Frameworks and Inference engines nGraph C G L O W MLIR DL Compilers Kernel MKL-DNN NNPack cuDNN Libraries Hand optimized

Hardware

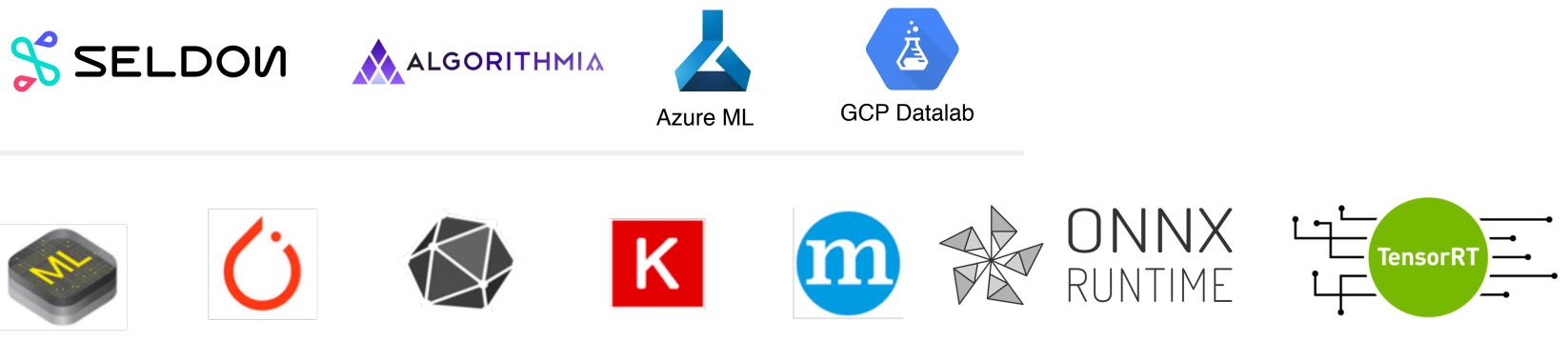




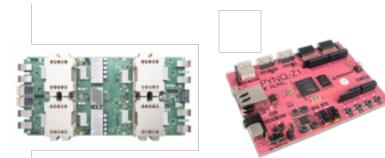
Current Dominant Deep Learning Systems Landscape

Orchestrators **Kubeflow** Frameworks and Inference engines nGraph DL Compilers Kernel NNPack cuDNN Libraries Hand optimized

Hardware

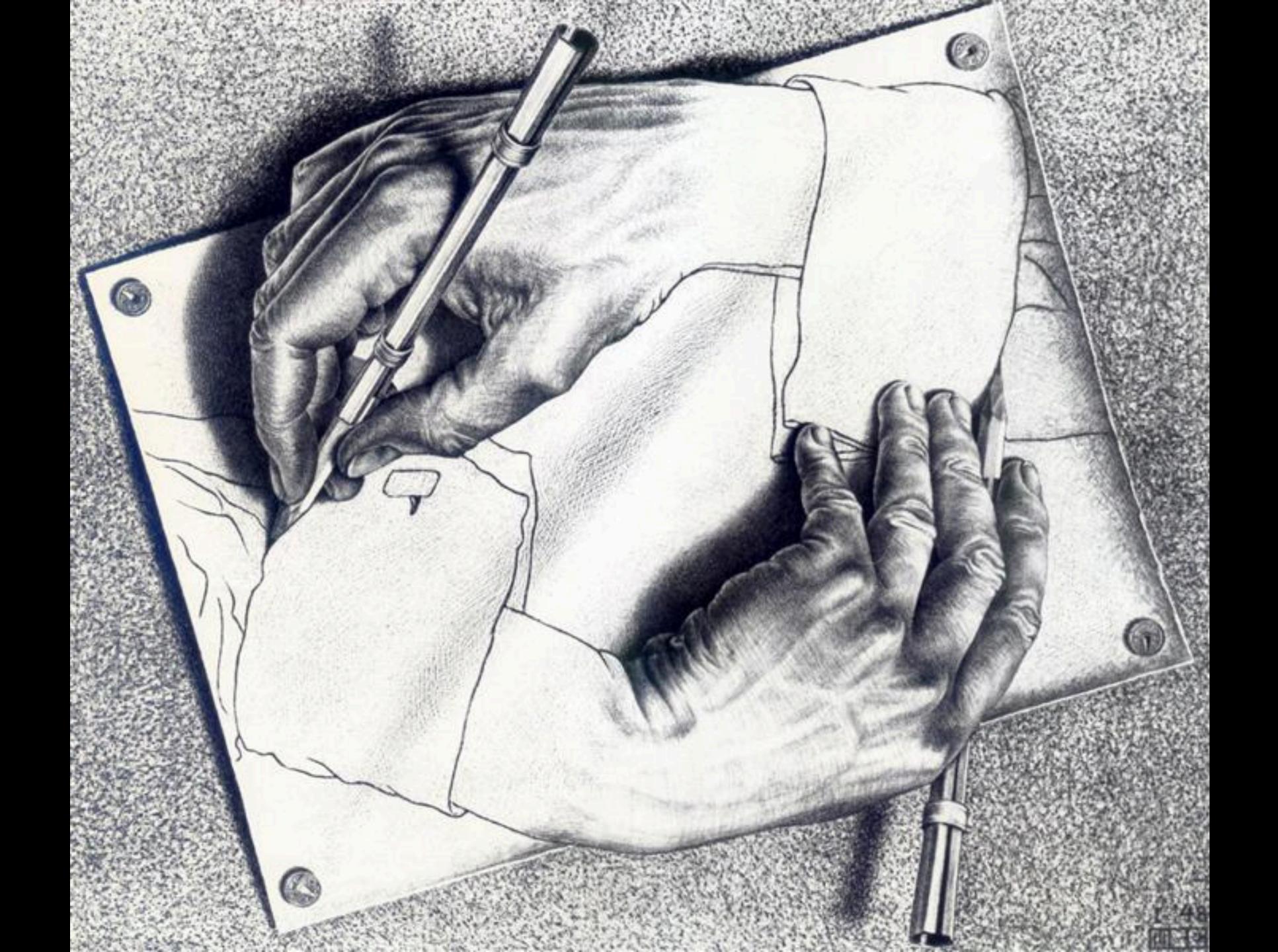


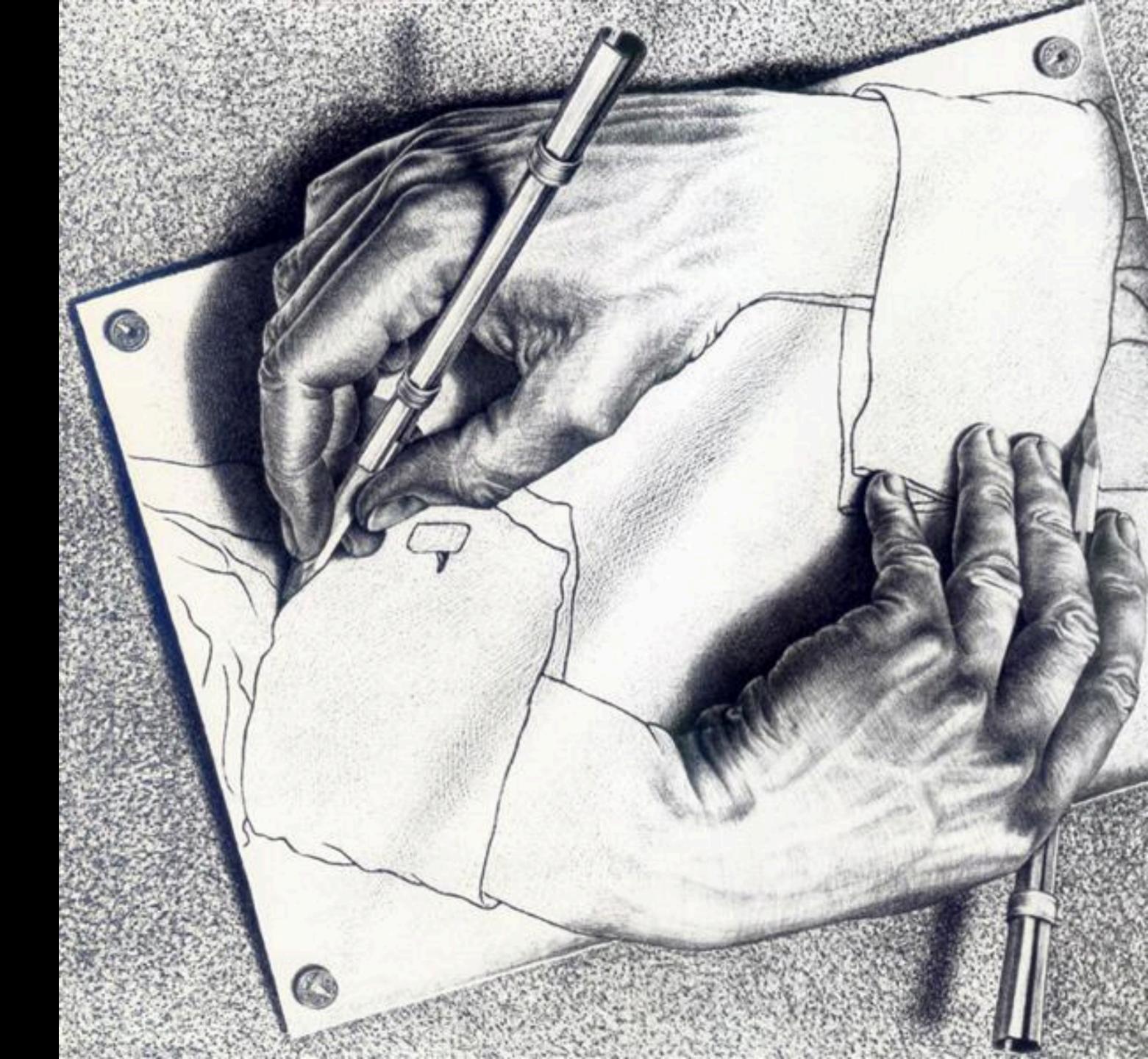
MKL-DNN



htvm

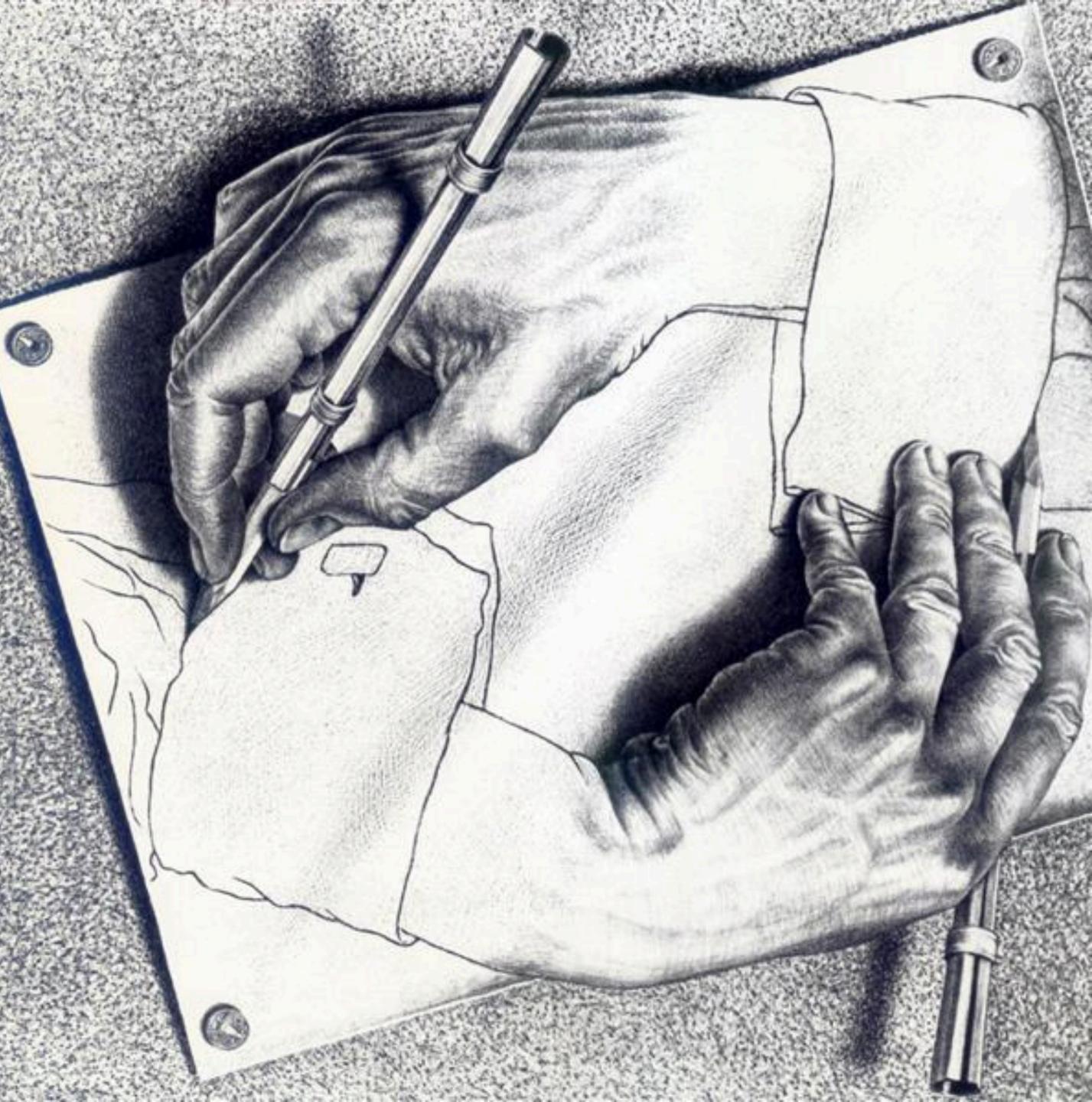
Open source, automated end-toend optimization framework for deep learning.





Using ML for better ML systems.

Deal with design complexity and large parameter spaces...



Using ML for better ML systems.

Deal with design complexity and large parameter spaces...

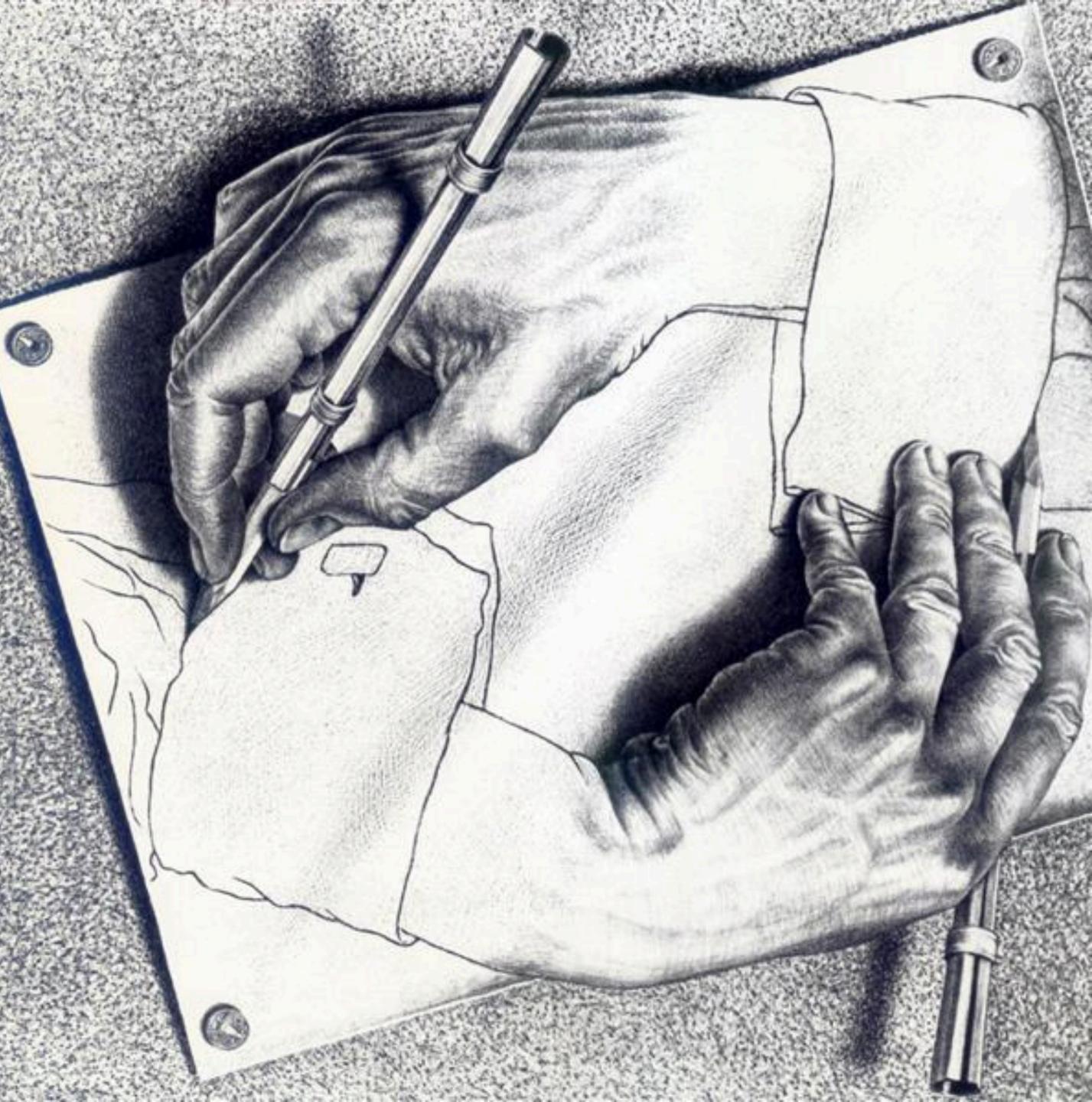
Model optimization strategies and parameters

Efficient operator implementations

Data communication patterns

Model-HW co-tuning

Searching for efficient HW designs



More hardware backends (e.g., CortexM, RISC-V, DSPs)

More optimizations (e.g., quantization, data layout)

More hardware backends (e.g., CortexM, RISC-V, DSPs)

More optimizations (e.g., quantization, data layout)

More hardware backends (e.g., CortexM, RISC-V, DSPs)

Usability (tutorials, docs, automation), community development

The Source Community Growth and Impact

70% growth from Dec 2018 to 295 contributors from UW, Berkeley, Cornell, UCLA, Amazon, Huawei, NTT, Facebook, Microsoft, Qualcomm, Alibaba, Intel, ...

TEVM Open Source Community Growth and Impact

70% growth from Dec 2018 to 295 contributors from UW, Berkeley, Cornell, UCLA, Amazon, Huawei, NTT, Facebook, Microsoft, Qualcomm, Alibaba, Intel, ...

Used in production at leading vendors:

Deep Learning **Compiler Service**

Tensor Engine for mobile ASIC

Mobile and Server Optimizations

Cloud-side model optimization

The Source Community Growth and Impact

70% growth from Dec 2018 to 295 contributors from UW, Berkeley, Cornell, UCLA, Amazon, Huawei, NTT, Facebook, Microsoft, Qualcomm, Alibaba, Intel, ...

Used in production at leading vendors:

Deep Learning **Compiler Service**

Tensor Engine for mobile ASIC

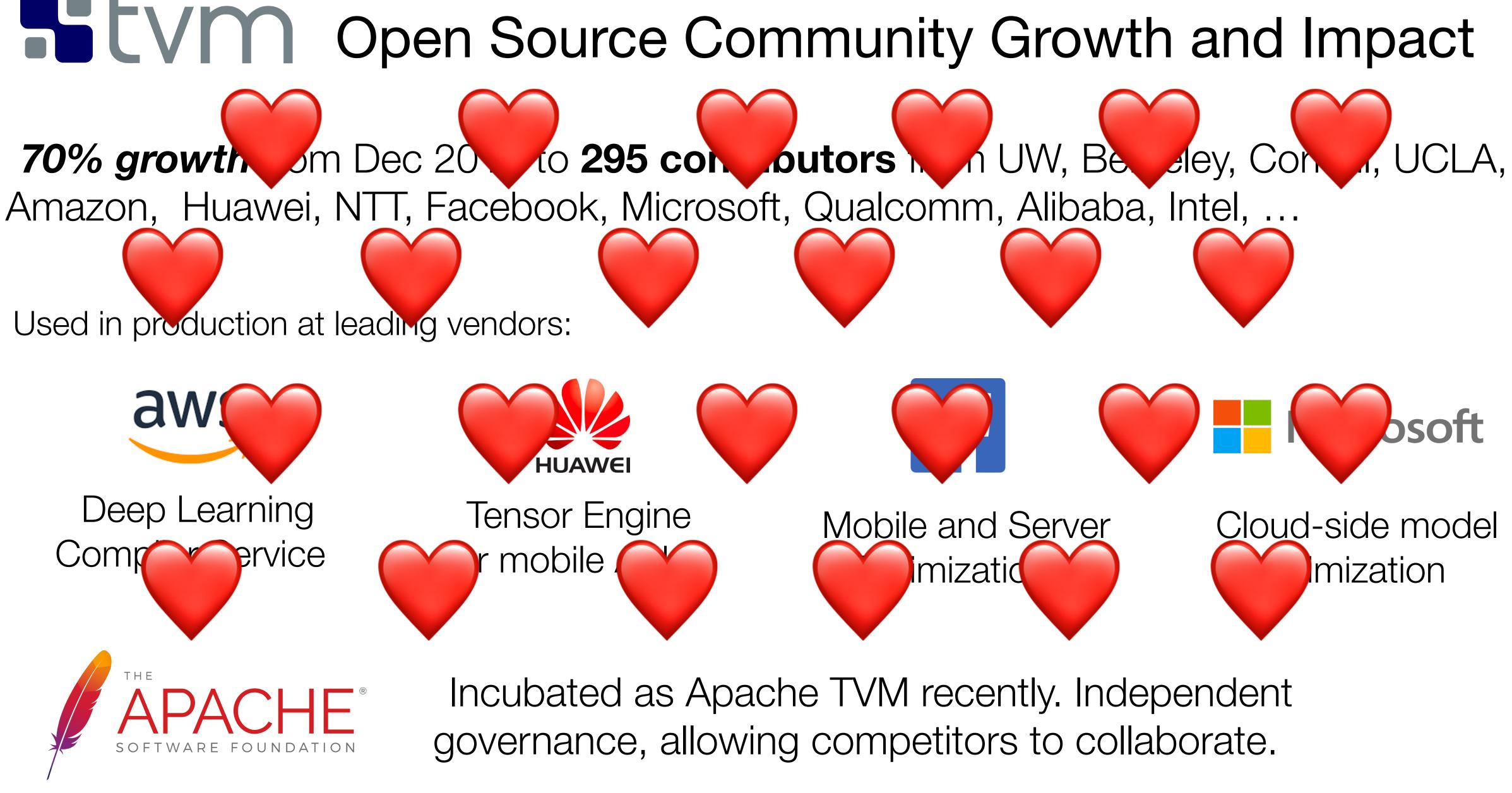
Incubated as Apache TVM recently. Independent governance, allowing competitors to collaborate.

Microsoft

Mobile and Server Optimizations

Cloud-side model optimization

Used in production at leading vendors:



Jeff Gehlhaar

University of Washington

Dec 2019

Qualcomm Technologies, Inc. Al Overview

Jeff Gehlhaar, VP Technology Qualcomm Technologies, Inc.

Qualcom

We're creating a future of distributed intelligence

Our platforms are enabling a world of decentralized computing to realize the true potential of AI at scale. On-device inference processes data closest to the source for maximum speed and security, and low-latency 5G connectivity augments experiences with edge cloud processing for training updates and connected services.

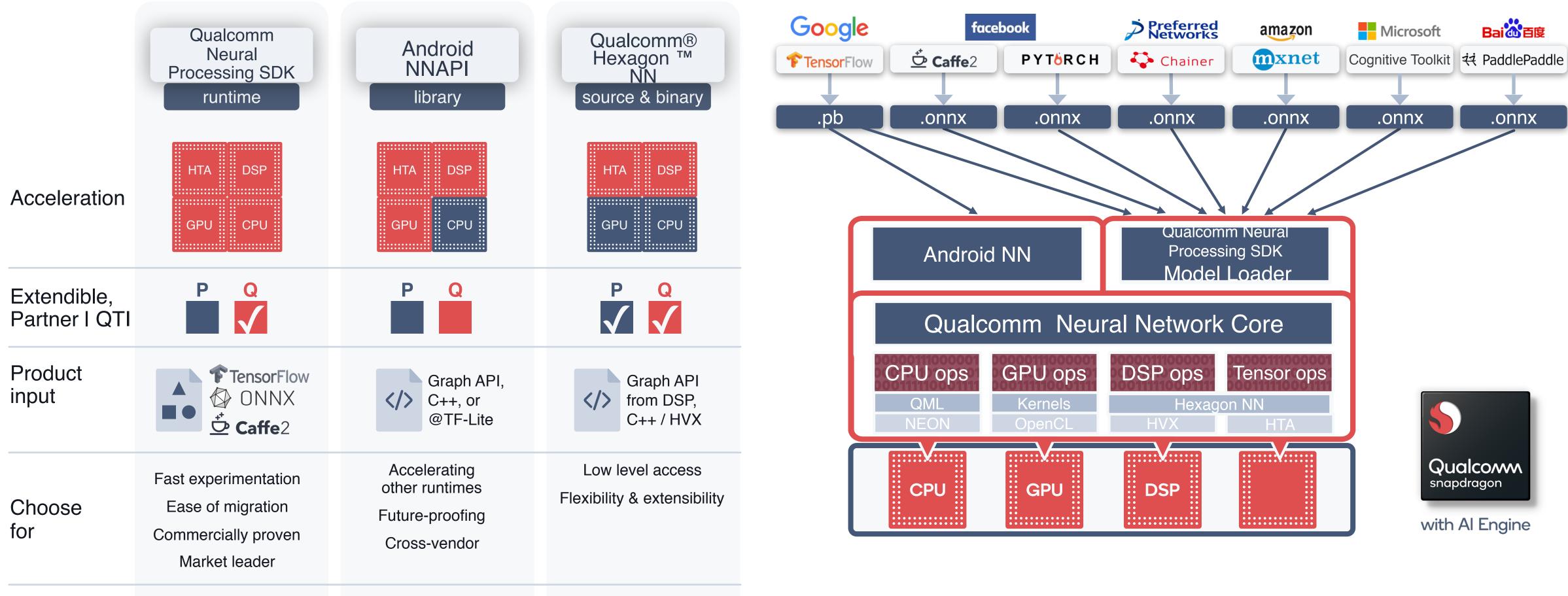
Our process

We design and develop holistic Al systems

Our process provides a comprehensive approach to AI research and development. We take on hard problems and tackle complexity head on to meticulously design and build systems that deliver complete end-to-end AI solutions, from fundamental research to product execution.

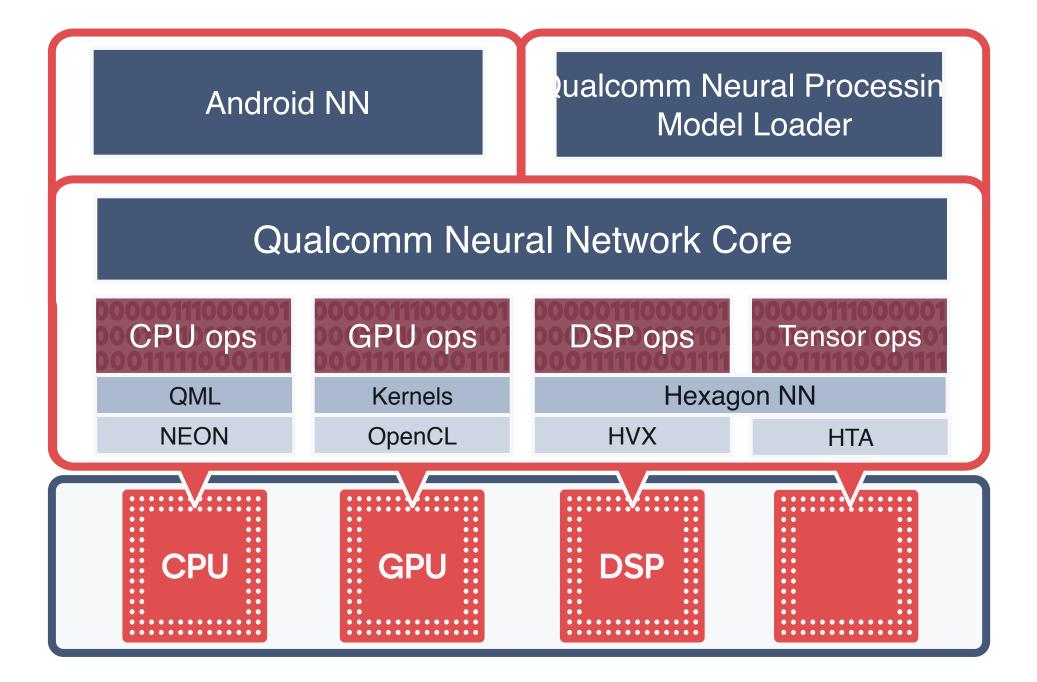
Al Research

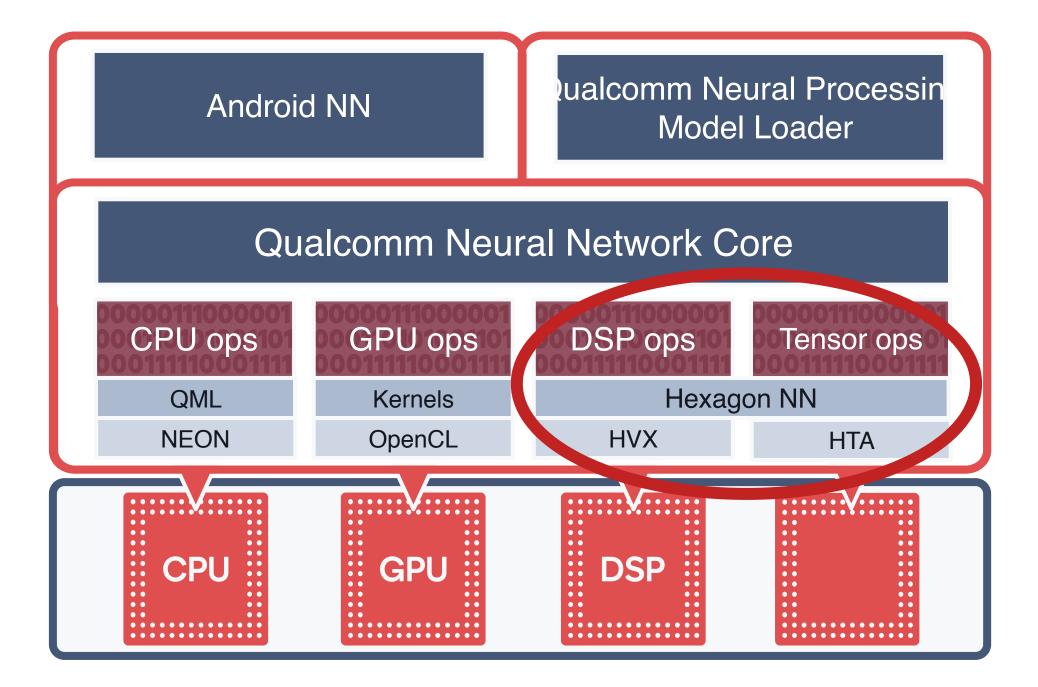
Qualcom

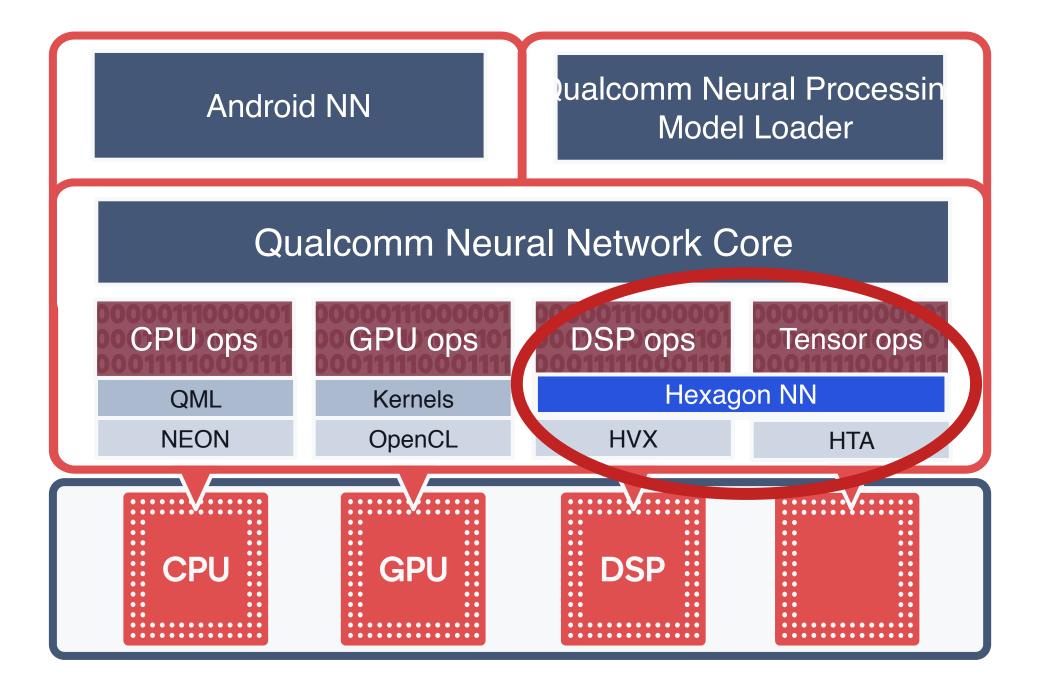


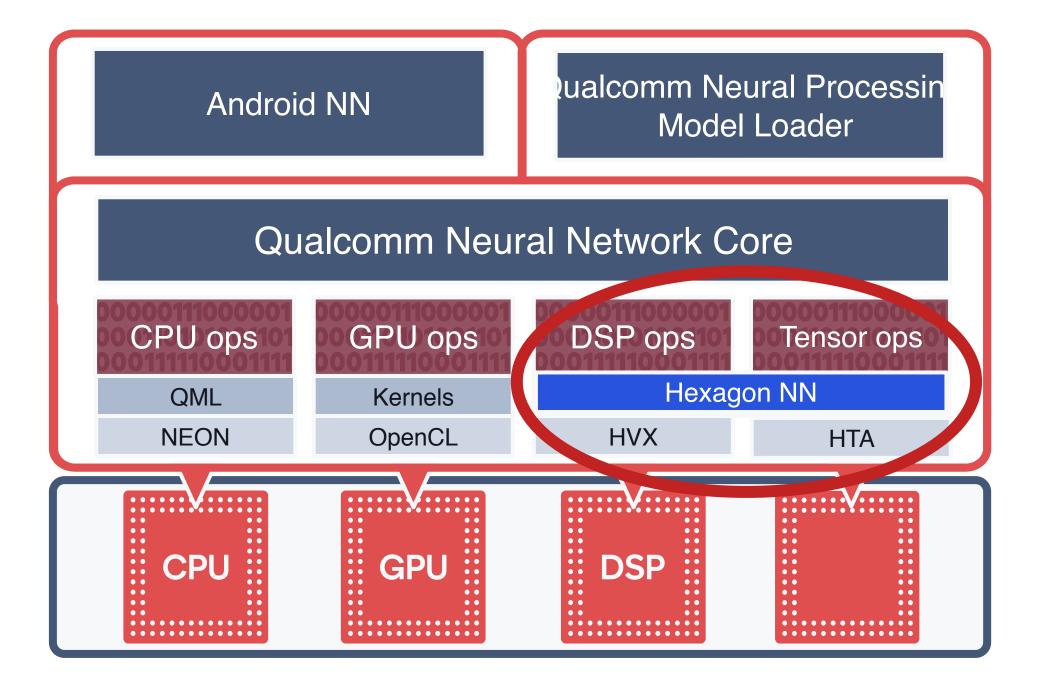
Our AI software products

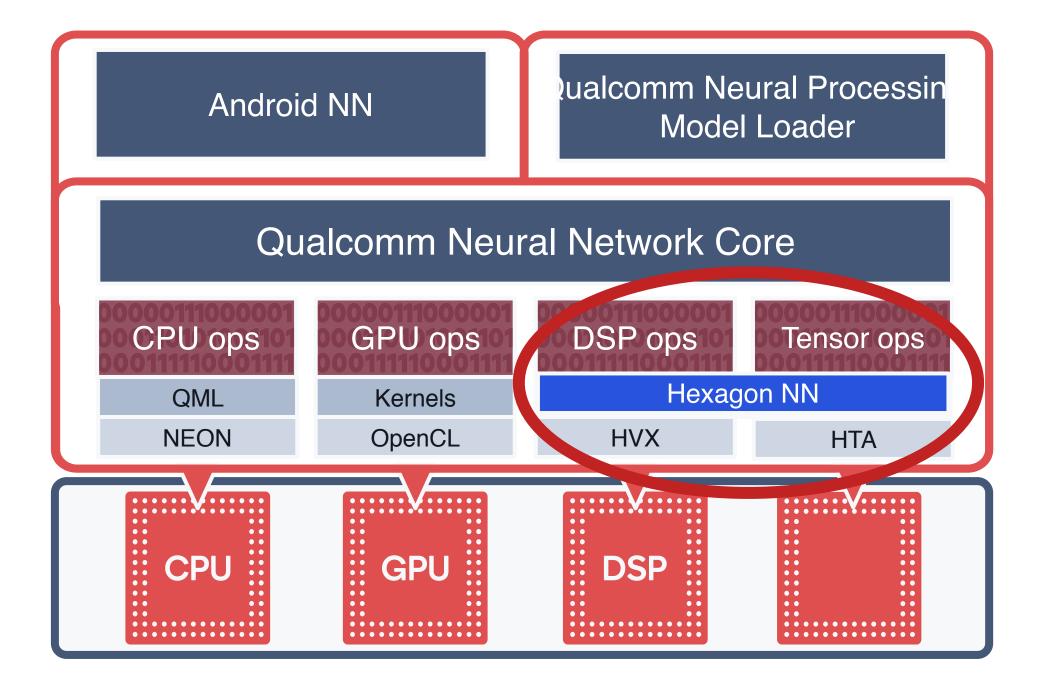
Qualcomm Neural Processing SDK, Qualcomm Hexagon and Qualcomm AI Engine are products of Qualcomm Technologies, Inc.



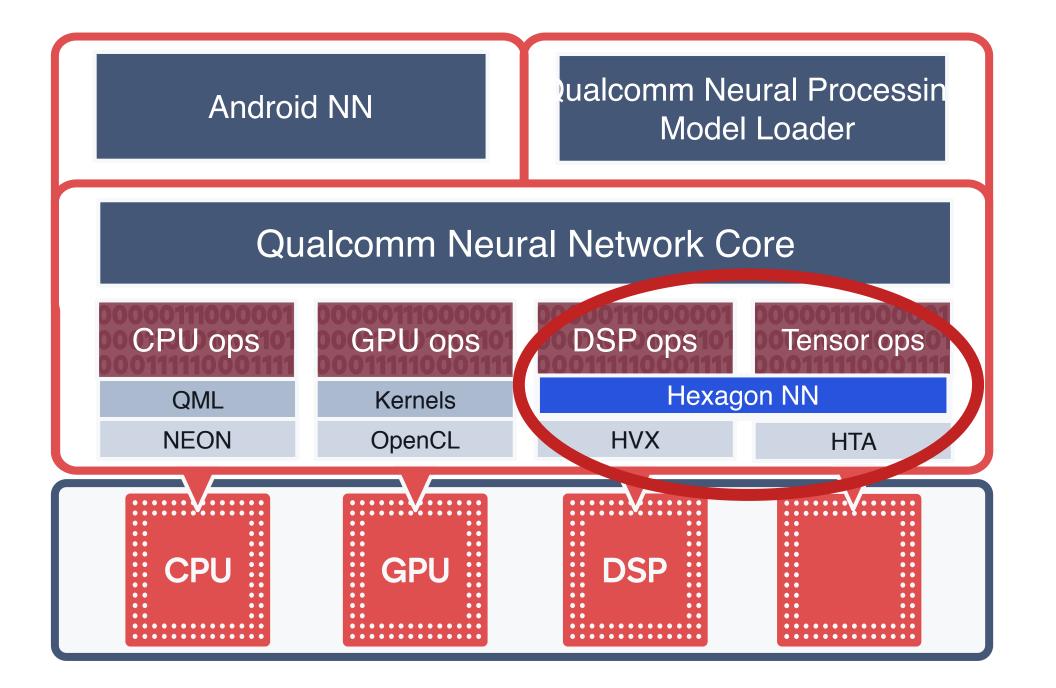






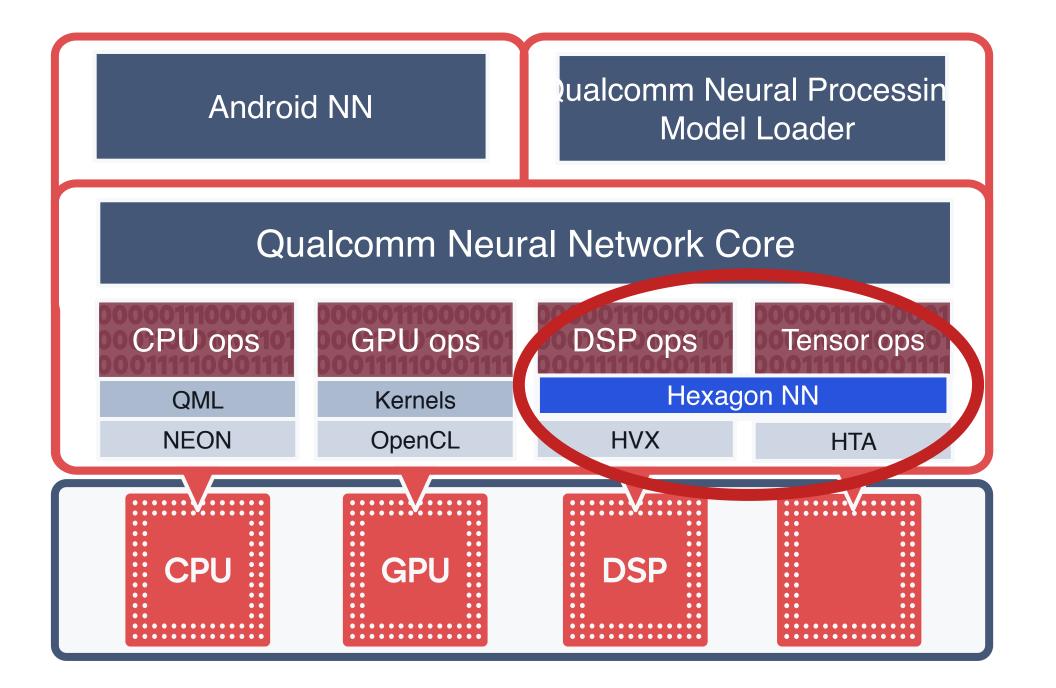


Currently supports ~100 ops



Currently supports ~100 ops

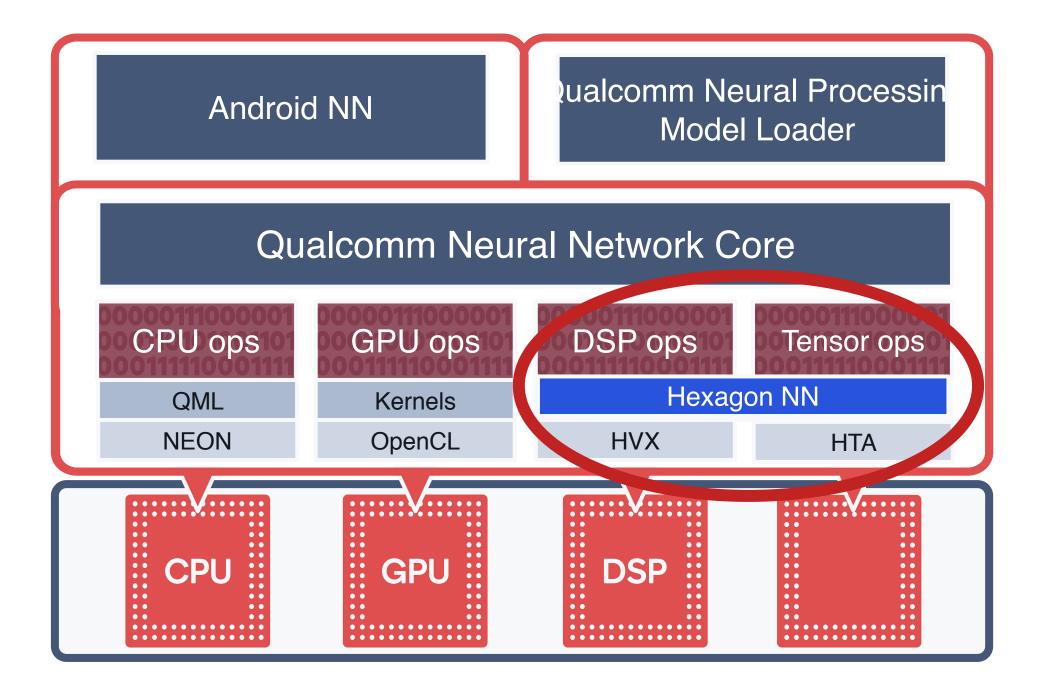
 Handwritten and optimized across 3 different Hexagon architecture variations



Currently supports ~100 ops

 Handwritten and optimized across 3 different Hexagon architecture variations

 Ops have to be written for both Hexagon Vector Extensions (HVX) and Hexagon Tensor Accelerator (HTA) units



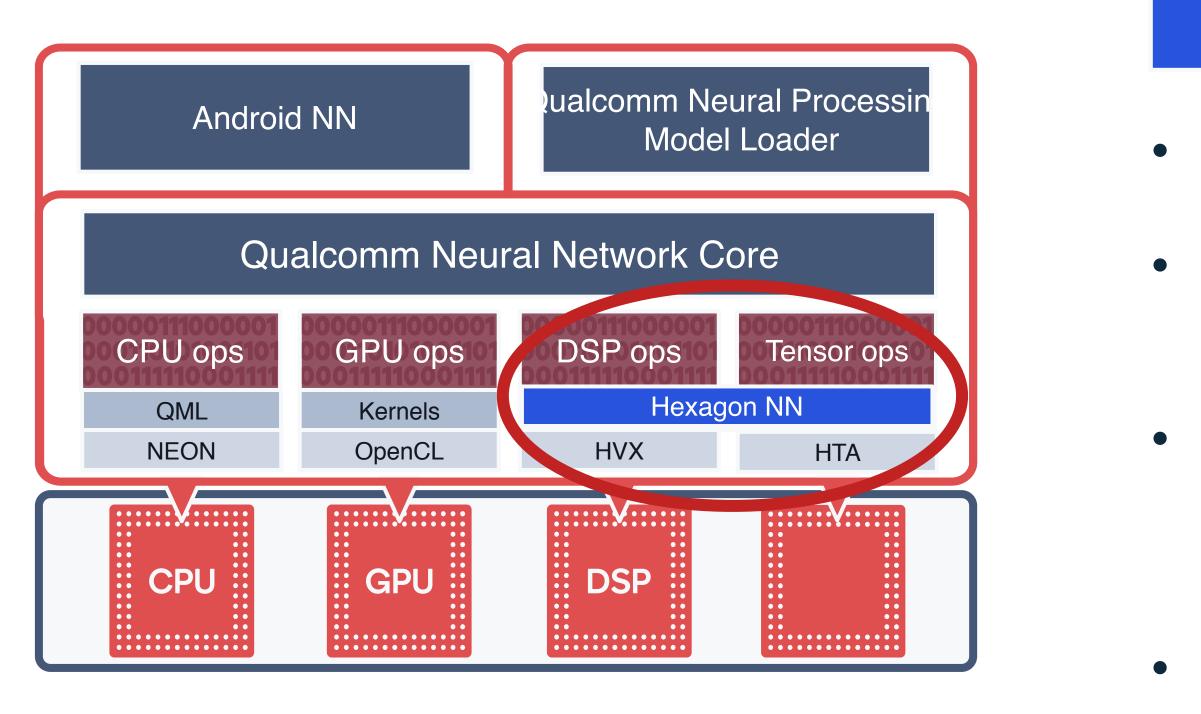
Hexagon NN

Currently supports ~100 ops

 Handwritten and optimized across 3 different Hexagon architecture variations

 Ops have to be written for both Hexagon Vector Extensions (HVX) and Hexagon Tensor Accelerator (HTA) units

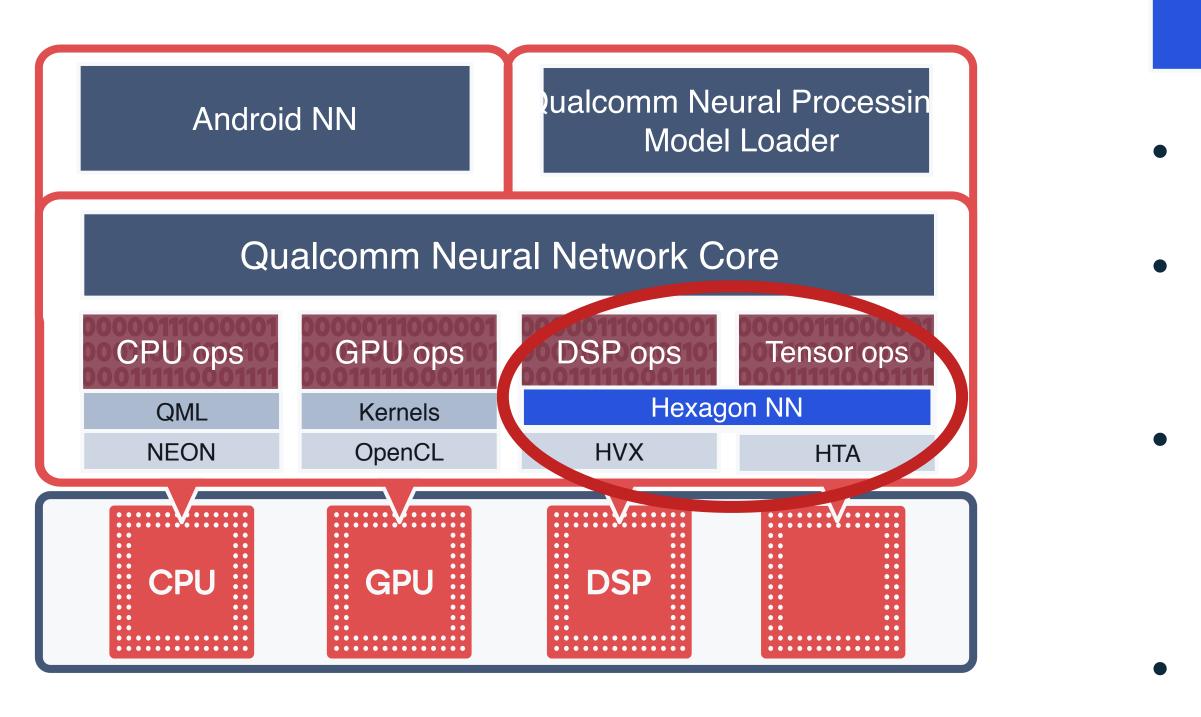
Incredible demand from customers to add new operators and operator variants



TVM gives us internal development advantage and gives customers a tool to to develop custom operators.

Hexagon NN

- Currently supports ~100 ops
- Handwritten and optimized across 3 different Hexagon architecture variations
- Ops have to be written for both Hexagon Vector Extensions (HVX) and Hexagon Tensor Accelerator (HTA) units
- Incredible demand from customers to add new operators and operator variants
- Hexagon is a flexible and power efficient but complex IP block to program efficiently. Like Halide for CV applications,



TVM gives us internal development advantage and gives customers a tool to to develop custom operators.

TVM is key to ML Access on Hexagon

Hexagon NN

- Currently supports ~100 ops
- Handwritten and optimized across 3 different Hexagon architecture variations
- Ops have to be written for both Hexagon Vector Extensions (HVX) and Hexagon Tensor Accelerator (HTA) units
- Incredible demand from customers to add new operators and operator variants
- Hexagon is a flexible and power efficient but complex IP block to program efficiently. Like Halide for CV applications,

Key Ideas and Innovations

Qualcomm Technologies, Inc. is a leader in silicon for on-device and cloud solutions

Hexagon hardware provides a key power / performance advantage but is complicated to optimize

TVM and domain specific languages are key for per-kernel and whole graph optimization strategies

Our Qualcomm AI Research is advancing hardware aware optimization strategies

Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc

Qualcom

Thank you

Follow us on: **f y** in O

For more information, visit us at: www.qualcomm.com & www.qualcomm.com/blog

Nothing in these materials is an offer to sell any of the components or devices referenced herein.

©2018-2019 Qualcomm Technologies, Inc. and/or its affiliated companies. All Rights Reserved.

Qualcomm, Snapdragon and Hexagon are trademarks of Qualcomm Incorporated, registered in the United States and other countries. Other products and brand names may be trademarks or registered trademarks of their respective owners. References in this presentation to "Qualcomm" may mean Qualcomm Incorporated, Qualcomm Technologies, Inc., and/or other subsidiaries or business units within the Qualcomm corporate structure, as applicable. Qualcomm Incorporated includes Qualcomm's licensing business, QTL, and the vast majority of its patent portfolio. Qualcomm Technologies, Inc., a wholly-owned subsidiary of Qualcomm Incorporated, operates, along with its subsidiaries, substantially all of Qualcomm's engineering, research and development functions, and substantially all of its product and services businesses, including its semiconductor business, QCT.

Yida Wang

amazon

AWS AI

AWS AI

- The broadest and most complete set of machine learning capabilities
 - Al Services
 - Amazon SageMaker
 - ML Frameworks & Infrastructure

AWS AI

- The broadest and most complete set of machine learning capabilities
 - Al Services
 - Amazon SageMaker
 - ML Frameworks & Infrastructure
- - 81% of deep learning in cloud runs on AWS

• More machine learning happens on AWS than anywhere else

• As a cloud service: Amazon SageMaker Neo

- As a cloud service: Amazon SageMaker Neo
- As a solution
 - Fastest model inference on a number of Amazon EC2 instances
 - Alexa Wakeword model on Amazon Echo
 - Collaborating with a number of external device makers

- As a cloud service: Amazon SageMaker Neo
- As a solution
 - Fastest model inference on a number of Amazon EC2 instances
 - Alexa Wakeword model on Amazon Echo
 - Collaborating with a number of external device makers
- As a research project
 - Three accepted peer-reviewed papers
 - More under review and in preparation

- As a cloud service: Amazon SageMaker Neo
- As a solution
 - Fastest model inference on a number of Amazon EC2 instances
 - Alexa Wakeword model on Amazon Echo
 - Collaborating with a number of external device makers
- As a research project
 - Three accepted peer-reviewed papers
 - More under review and in preparation
- As a compiler
 - AWS Inferentia

 Join the effort from the very beginning, one of the major contributors

- Join the effort from the very beginning, one of the major contributors
- Major features in the past year
 - Frontend: TF object detection model
 - Relay: pass manager, VM, QNN dialect, graph partitioning

 - Optimization: vision-specific ops, conv2d_transpose, sparsity, BERT • Runtime: bring your own codegen

- Join the effort from the very beginning, one of the major contributors
- Major features in the past year
 - Frontend: TF object detection model
 - Relay: pass manager, VM, QNN dialect, graph partitioning

 - Optimization: vision-specific ops, conv2d_transpose, sparsity, BERT • Runtime: bring your own codegen
- Service in the community
 - 2 PMC members, 8 committers, 14 reviewers, and growing • Active participation and leadership

Jason Knight

OctoML

Secure and efficient deep learning everywhere





N = number of people building machine learning models

N = number of people building machine learning models

M = number of software developers

N = number of people building machine learning models

M = number of software developers

N >> M

N = number of people building machine learning models

M = number of software developers

N >> M

as t $\rightarrow \infty$



Deployment Pain/Complexity

- Model ingestion
- Performance estimation and comparison
- Cartesian product of models, frameworks, and hardware
- Optimization
 - 00, 01, 02 0
 - Target settings: march, mtune, mcpu Ο
 - Size reductions Ο
 - Quantization, pruning, distillation Ο
- Custom operators (scheduling, cross hardware support)
- Lack of portability / varying coverage across frameworks
- Model integration
 - Output portability Ο
 - Packaging (Android APK, iOS ipa, Python wheel, Maven artifact, etc) Ο

OctoML



TVM is core to making that happen.

TVM is core to making that happen.

... but it's only the first (important!) step

What are we doing about it?

To make DL deployment easy for everyone: 1. Strengthen the core:

- Invest in open source TVM for robustness, accessibility, community, and coverage Ο
- (See next slide) Ο

OctoML investments into TVM

OctoML invests in TVM

Talks today:

Unified IR – Tiangi Chen Dynamic Execution and Virtual Machine – Jared Roesch and Haichen Shen uTVM: TVM on bare-metal devices – Logan Weber TVM at OctoML – Jason Knight

Not presented today:

TVM Transformer Improvements – Josh Fromm Automatic Quantization – Ziheng Jiang OctoML

What are we doing about it?

To make DL deployment easy for everyone: 1. Strengthen the core:

- Invest in open source TVM for robustness, accessibility, community, and coverage Ο
- (See next slide) Ο

What are we doing about it?

To make DL deployment easy for everyone: 1. Strengthen the core:

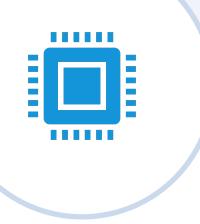
- Invest in open source TVM for robustness, accessibility, community, and coverage Ο
- (See next slide) Ο
- 2. Build additional stepping stones
 - By forming a company! (come see our OctoML talk in the afternoon) Ο

Simple, secure, and efficient deployment of ML models in the edge and the cloud

Drive TVM adoption Core infrastructure and improvements

Apache TVM ecosystem

OctoML



Expand the set of users who can deploy ML models: Services, automation, and integrations

Team - The Octonauts

Luis Ceze Co-founder, CEO PhD in Computer Architecture and Compilers Professor at UW-CSE Venture Partner, Madrona Ventures

Jason Knight Co-founder, CPO PhD in Computational **Biology and Machine** Learning

Logan Weber

An Wang

Josh Fromm

Zachary Tatlock

Stvm

Tianqi Chen Co-founder, CTO PhD in Machine Learning Professor at CMU-CS

Thierry Moreau Co-founder, Architect PhD in Computer Architecture

Jared Roesch Co-founder, Architect (soon) PhD in Programming Languages

Advisors

Andrew McHarg Ziheng Jiang Amanda Robles

Jay Bartot

Carlos Guestrin

Arvind Krishnamurthy

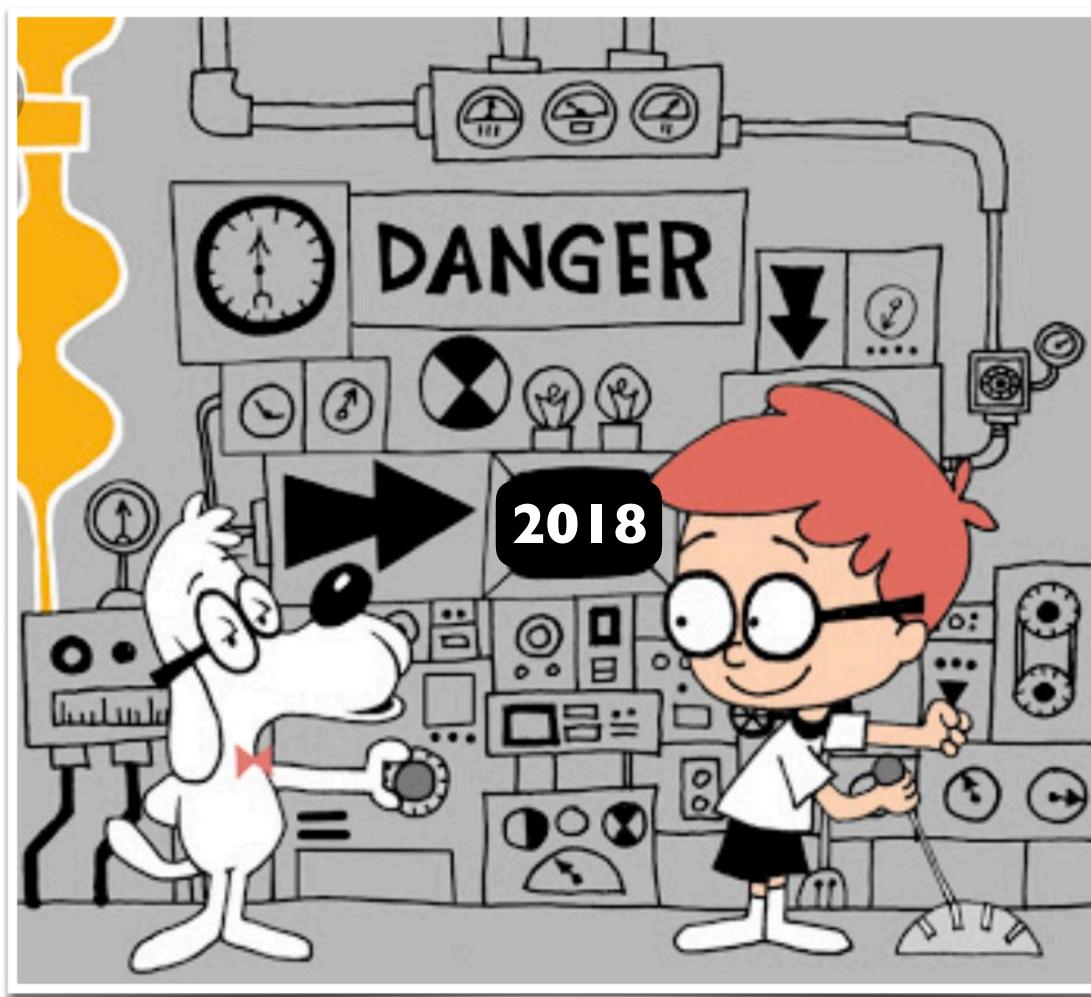
Find out more!

Come to our presentation about the Octomizer this afternoon

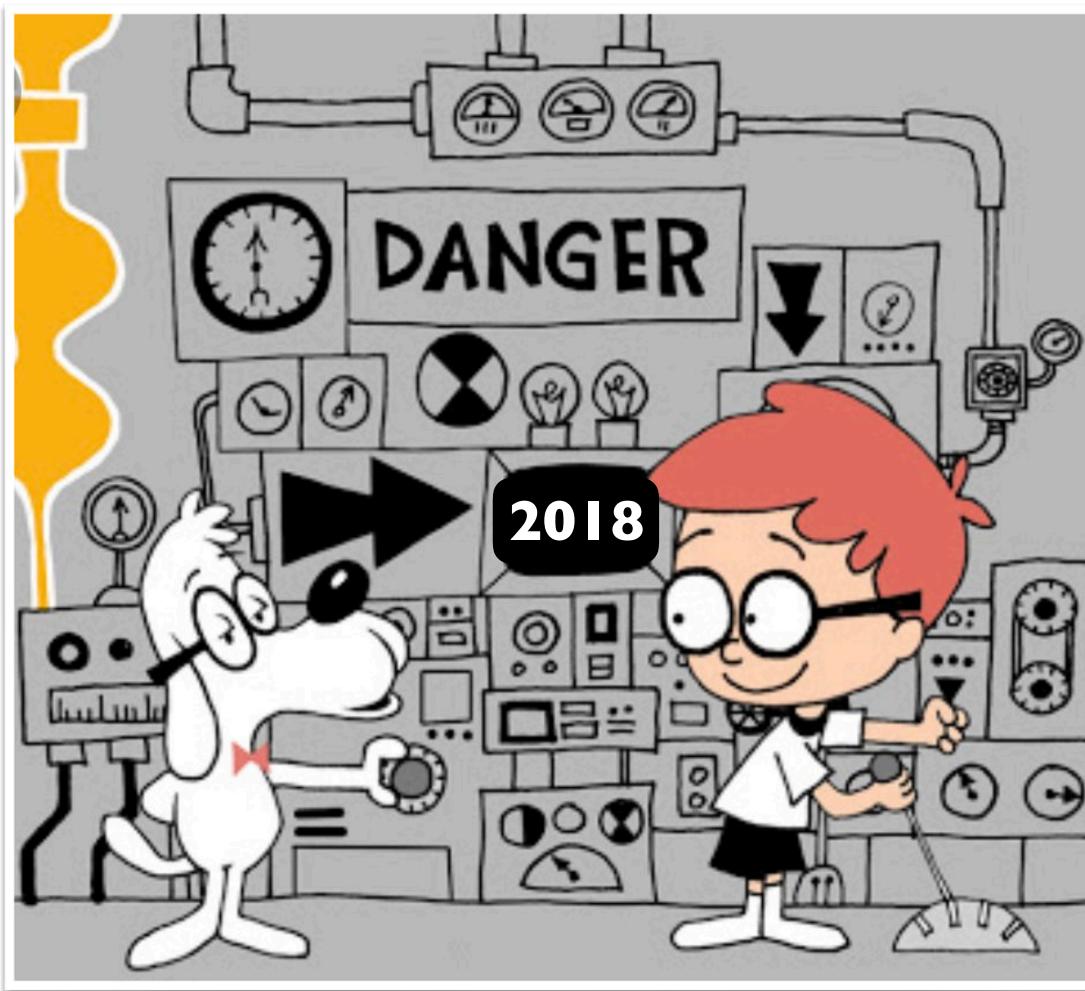
- Our first SaaS product for making DL deployment easy Ο
 - Push button AutoTVM optimization
 - Perf comparisons/analysis across models, frameworks, and hardware
 - And more!

https://octoml.ai (mailing list signup) **@octoml** on Twitter Email us! (jknight@octoml.ai)

Let's Get in the Wayback Machine

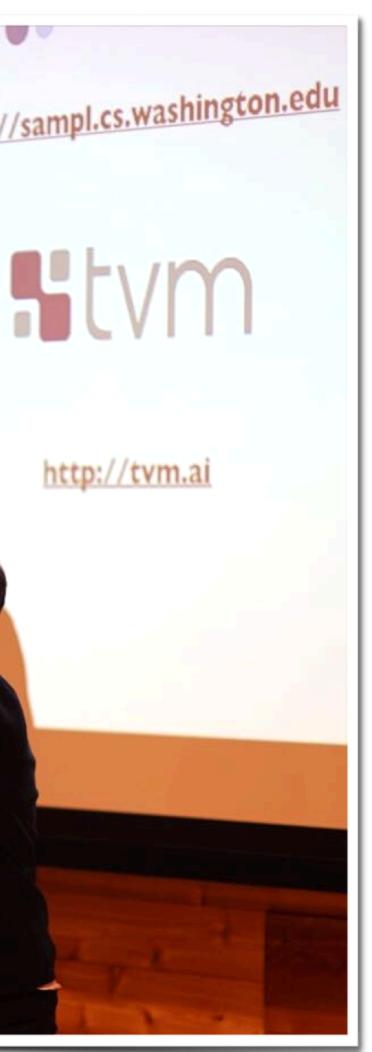


Let's Get in the Wayback Machine



- We apply the straightforward insight that
- machine learning models are just programs.
- This generalization enables support for a greater range of programs, new optimizations, range of devices. and the ability to target
- http://sampl.cs.washington.edu

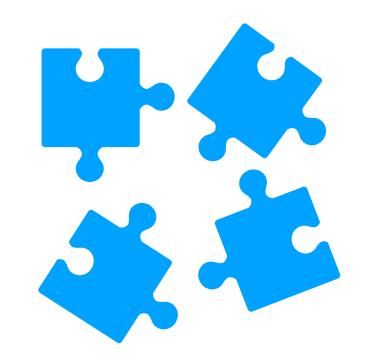
http://tvm.ai



Challenges for Deep Learning IRs

- State-of-the-art models increasingly depend on:
 - Datatypes lists, trees, graphs
 - Control flow branches, loops, recursion
 - Whole-program analyses and optimizations
- Any one feature "easy to bolt on"
- Folklore suggests full, expressive IR will be slow

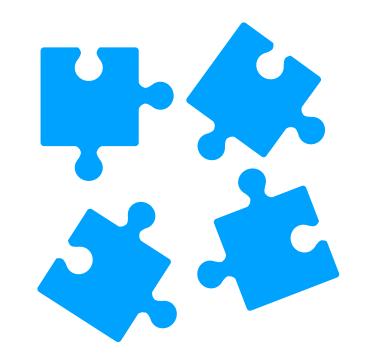
let encode = λ st. **if(...)**: encode(step(st)) else:



Challenges for Deep Learning IRs

- State-of-the-art models increasingly depend on:
 - Datatypes lists, trees, graphs
 - Control flow branches, loops, recursion
 - Whole-program analyses and optimizations
- Any one feature "easy to bolt on"
- Folklore suggests full, expressive IR will be slow

let encode = λ st. **if(...)**: encode(step(st)) else:

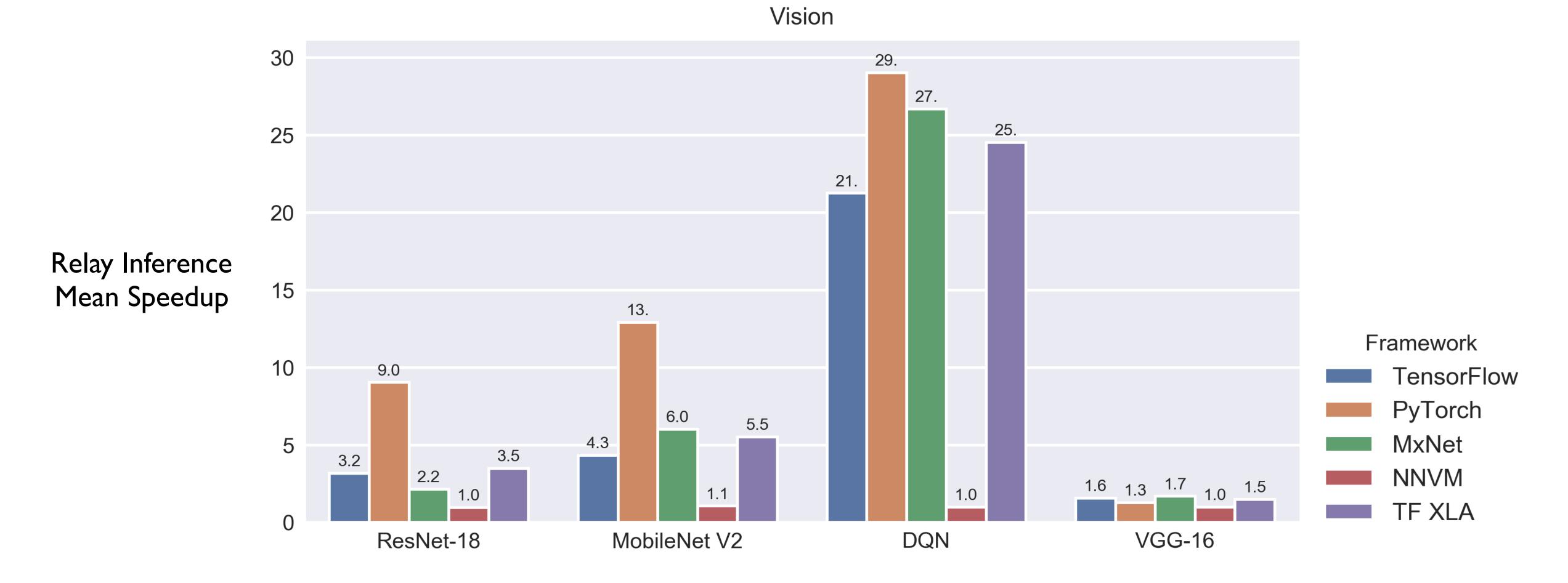


- Relay generalizes NNVM
- Retains graph-level optimizations
- Provides more expressive features
 - Datatypes, control flow, code re-use
 - Functional semantics to simplify analysis
 - Automatic differentiation + optimizations

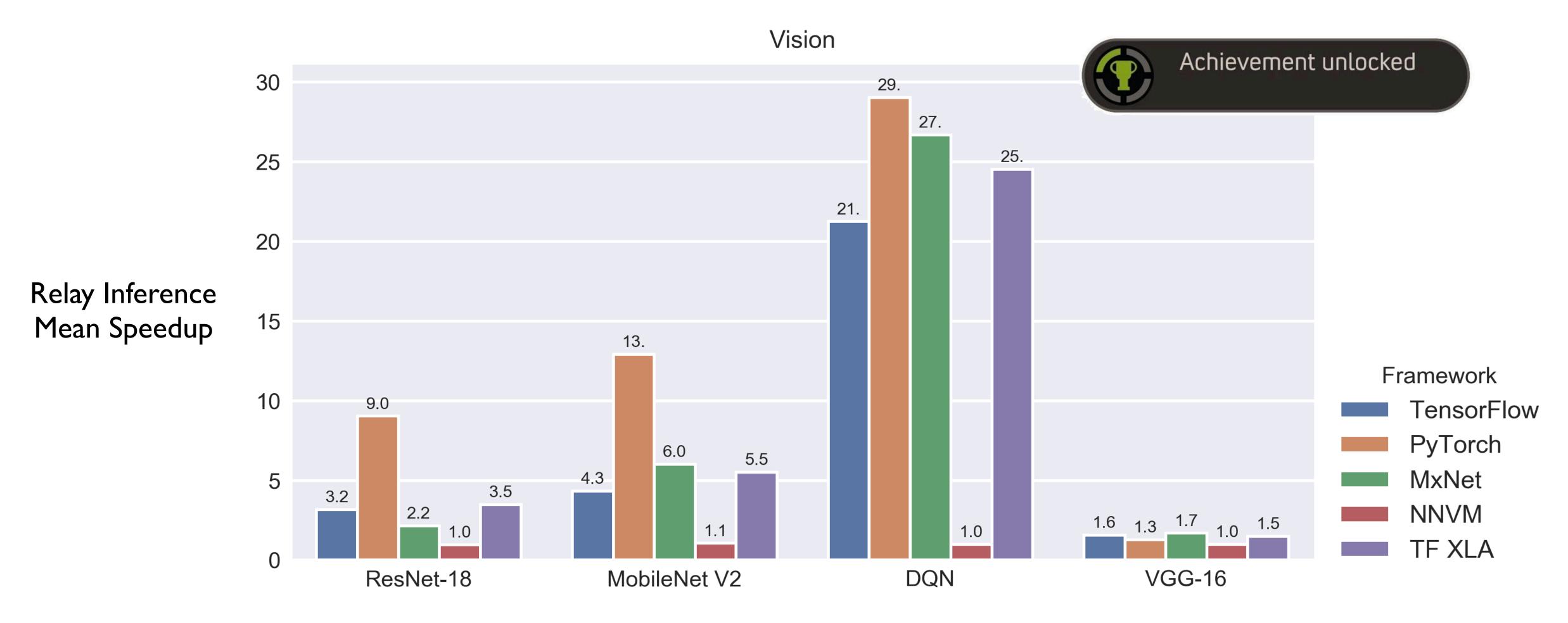
The Relay IR

Expr e ::= %l $const((r \mid b), s, bt)$ $e(\langle \tau, \ldots, \tau \rangle)?(e, \ldots, e)$ let $%l(:\tau)$? = e; e *e*; *e* %graph = e; e fn ((tyParam, ..., tyParam))? (param, ..., param) $(\rightarrow \tau)$? {e} (e, \ldots, e) e.n if (e) {e} else {e} match (e) { $p \rightarrow e$ $p \rightarrow e$ op ref(e) l e *e*:=*e*

~ "OCaml for ML"



High-level Relay models match NNVM in traditional vision inference



High-level Relay models match NNVM in traditional vision inference

- Low-cost abstraction enabled by:
 - Tensor shape inference and specialization
 - High-level operator fusion
 - Whole-program partial evaluation

<pre>%d1 })(%x1); %x2.1 := ones_like(%x2.0) let %x3 = read(%x)(); (%x2.0, (read(%x1.1),)) }</pre>

Relation-T

 Δ, T_1 : Type, ..., T_n : Type $\vdash (Rel(T_1, T_2, \ldots, T_n) \in \{\top, \bot\})$

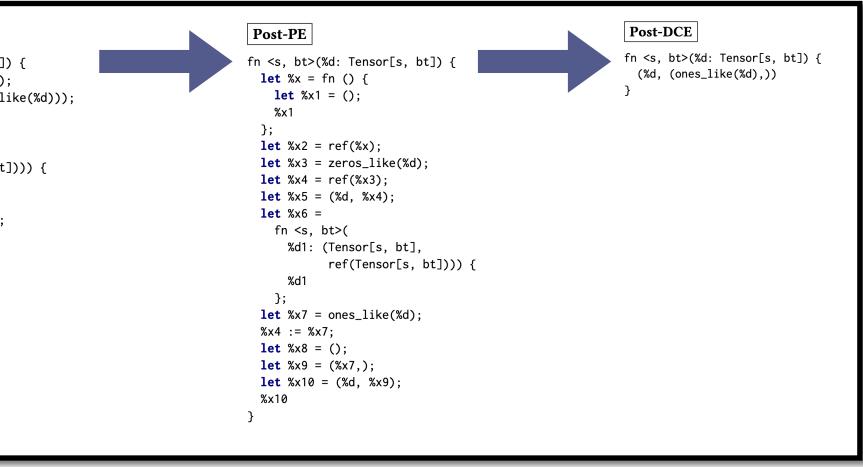
 $\Delta; \Gamma \vdash Rel$: Relation

Type-Func-Def

 $\forall i \in [1, r] \Delta; \Gamma \vdash R_i(T_1, \ldots, T_n, O)$ $\Delta; \Gamma, a_1: T_1, \ldots, a_n: T_n, \quad f: fn(T_1, \ldots, T_n) \to O \text{ where } R_1, \ldots, R_r \vdash body: O$ $\Delta; \Gamma \vdash \mathsf{def} \ @f(a_1:T_1, \ldots, a_n:T_n) \to O \text{ where } R_1, \ldots, R_r \{ body \}:$ $fn(T_1,\ldots,T_n) \rightarrow O$ where R_1,\ldots,R_r

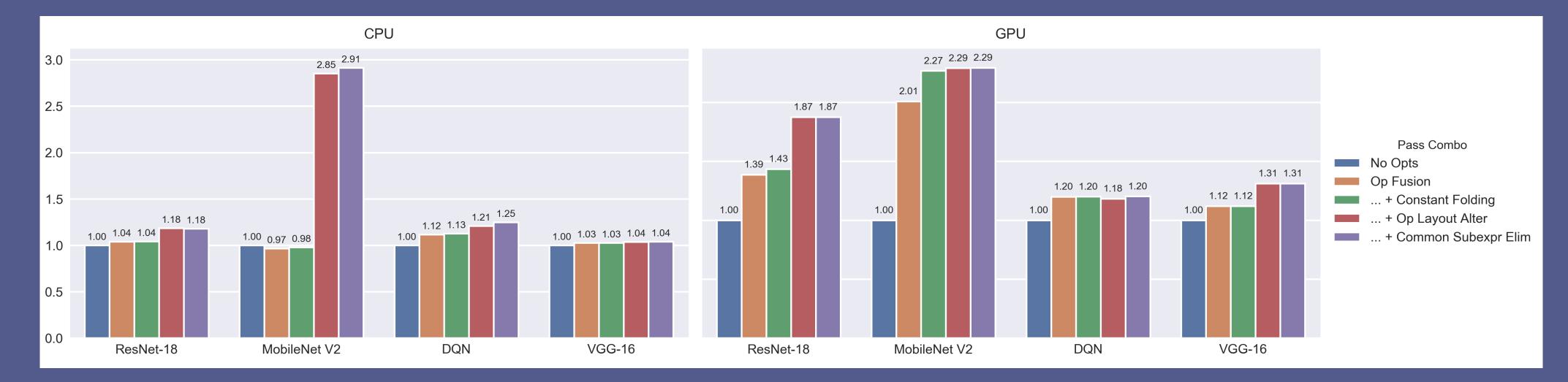
Type-Call

 $\Delta; \Gamma \vdash f : fn(T_1, \ldots, T_n) \rightarrow O$ where R_1, \ldots, R_r $\Delta; \Gamma \vdash a_1 : T_1, \ldots, a_n : T_n \qquad \forall i \in [1, r] \Delta; \Gamma \vdash R_i(T_1, \ldots, T_n, O)$ $\Delta; \Gamma \vdash f(a_1, \ldots, a_n) : O$



• Low-cost abstraction enabled by:

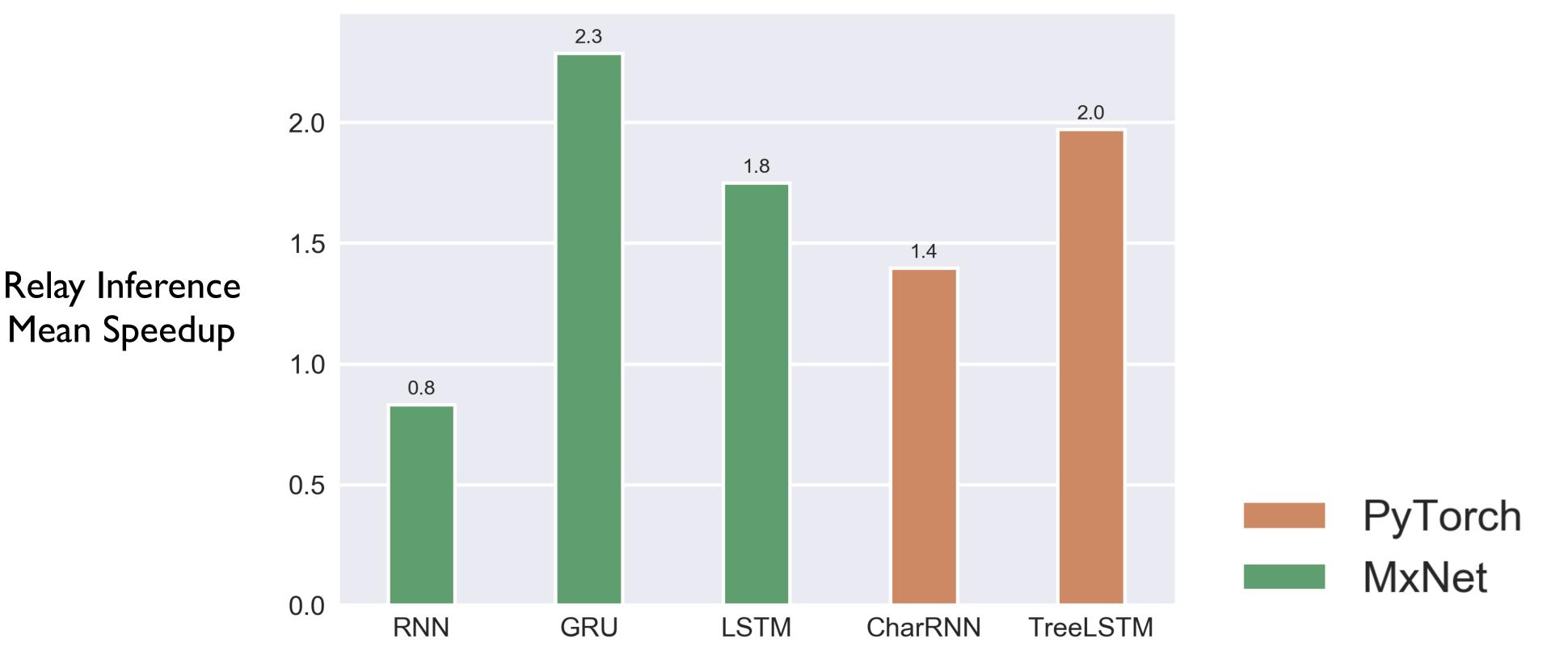
But most of all by extensible, composable optimization framework!



Relation-T

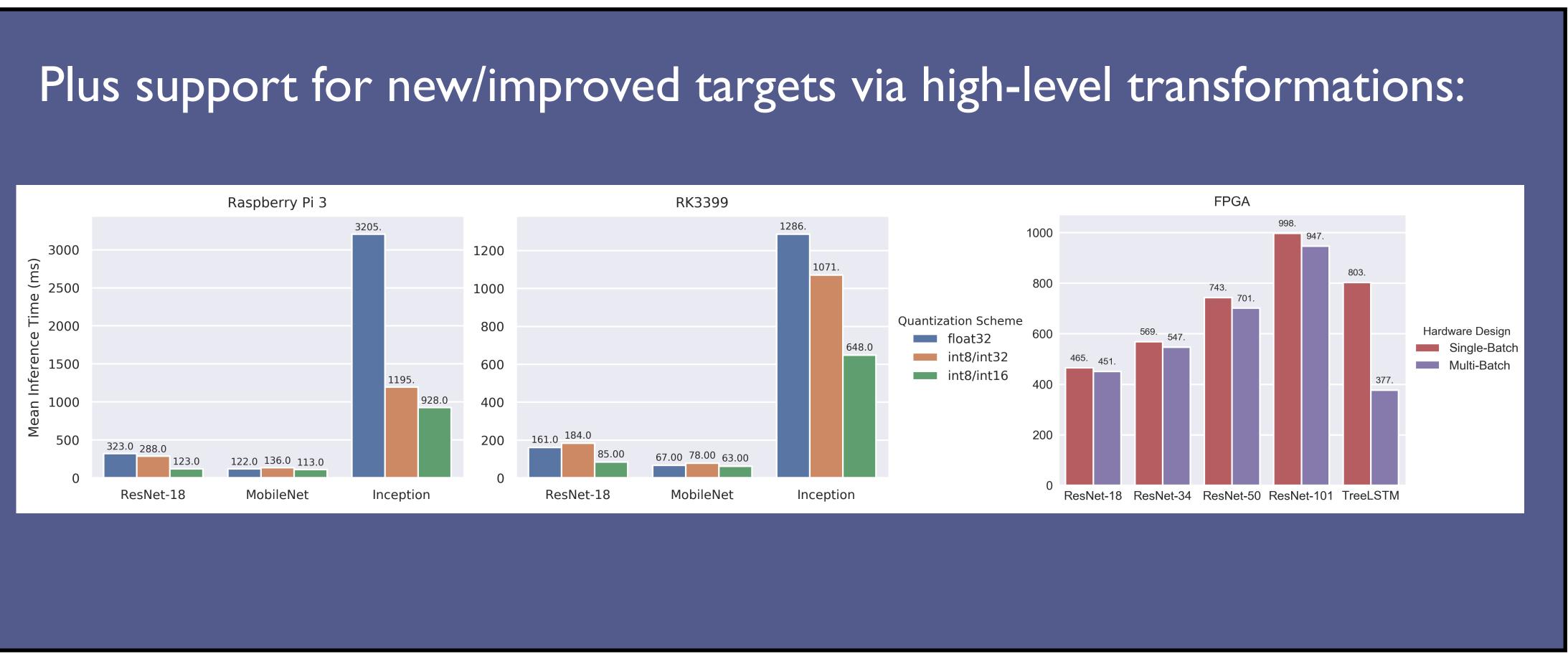
 Δ, T_1 : Type, ..., T_n : Type \vdash $(Rel(T_1, T_2, \ldots, T_n) \in \{\top, \bot\})$

Relay Win: Support for New Models



High-level Relay models for RNNs and LSTMs can outperform the rest

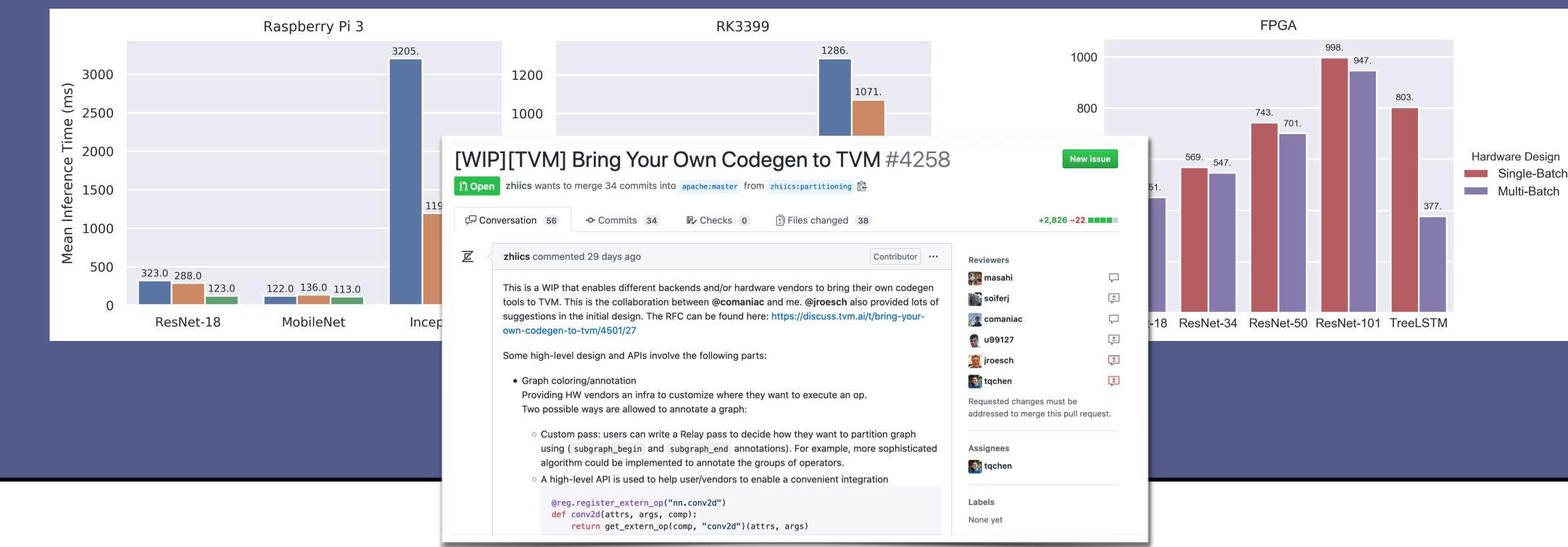
Relay Win: Support for New Models



High-level Relay models for RNNs and LSTMs can outperform the rest

Relay Win: Support for New Models

Plus support for new/improved targets via high-level transformations:



High-level Relay models for RNNs and LSTMs can outperform the rest

Research Ready Production Ready

[RELEASE][DRAFT] TVM v0.6

① Open tqchen opened this issue 29 days ago · 38 comments

tqchen commented 29 days ago • edited by yzhliu -

Dear Community, thanks to everyone's effort in the pas release.

This release will be managed by the TVM PMC, with @y few days we will be populating the release note in this t derived from our monthly report

We also encourage everyone in the community to reply be included in the v0.6.

It is our first release after moving to the apache repo. S reviews to reviews to released product matches the this eas a stre the future releases

New Features

Relay in Production

ional, ferences, programming langua v is a Late repletion for machine learning systems. Relay supports algebraic data types, closures, control flow, and recursion, allowing it to directly represent more complex models than computation graph-based IRs (e.g., NNVM) can. In TVM v0.6, Relay is in stable phase and is ready for production.

- Algebraic Data Types (ADT) support (#2442, #2575). ADT provides an expressive, efficient, and safe way to realize recursive computation (e.g., RNN). Refer to https://docs.tvm.ai/langref /relay_adt.html for more information
- Pass manager for Relay (#2546, #3226, #3234, #3191)
- Most frameworks have been supported in Relay, including ONNX, Keras, Tensorflow, Caffe2, CoreML, NNVMv1, MXNet (#2246).
- Explicitly manifest memory and tensor allocations in Relay. (#3560)

Relay Virtual Machine

The Relay Virtual Machine (Relay VM) is the new generation of runtime to strike a balance between performance and flexibility when deploying and executing Relay programs. Previously, the graph runtime is able to utilize the fully static nature of the input graphs to perform aggressive optimization such as fully static allocation, and optimal memory reuse. When we introduce models which make use of control-flow, recursion, dynamic shapes, dynamic allocation we must change how execution works.

Release candidate #42	259 New issue
Member ····	Assignees
t few months. This is a proposal to do a v0.6	syzhliu 💽 tqchen
zhliu and myself as moderators. In the next hread. Most release note content will be	Labels type: roadmap
to the thread about pending PRs that should	Projects None yet
o the main goal is about passing the general ASF requirements. We hope that we can	Milestone No milestone
	10 participants
age designed to be an expressive	in i

Relay + You!

- Relay merged in to TVM mainline
 - Documentation, tutorials, examples
 - Add your own analyses and optimizations
 - Target new accelerators
 - Support new models
 - Tons of community support!

+ many more amazing folks!

Relay + You!

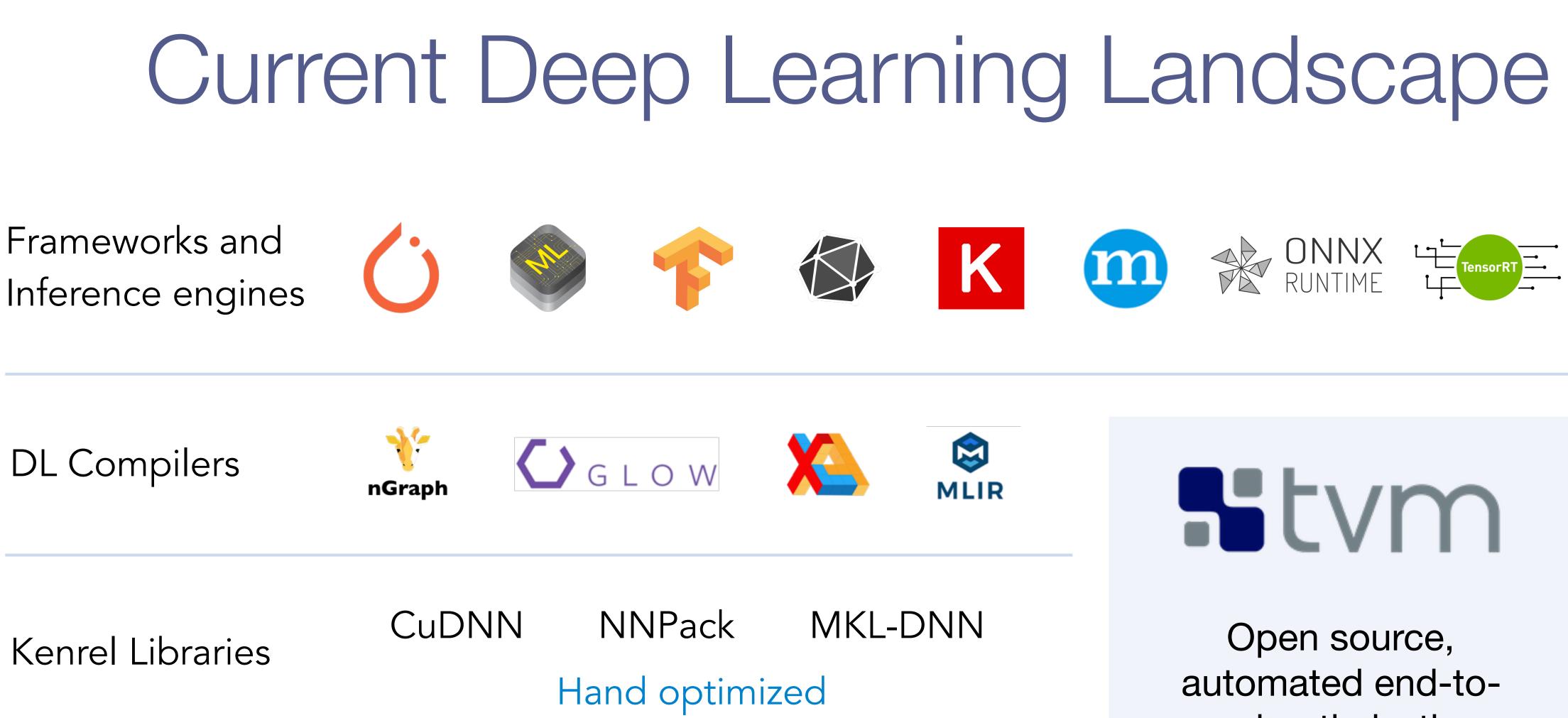
- Relay merged in to TVM mainline
 - Documentation, tutorials, examples
 - Add your own analyses and optimizations
 - Target new accelerators
 - Support new models
 - Tons of community support!

+ many more amazing folks!

Tianqi Chen

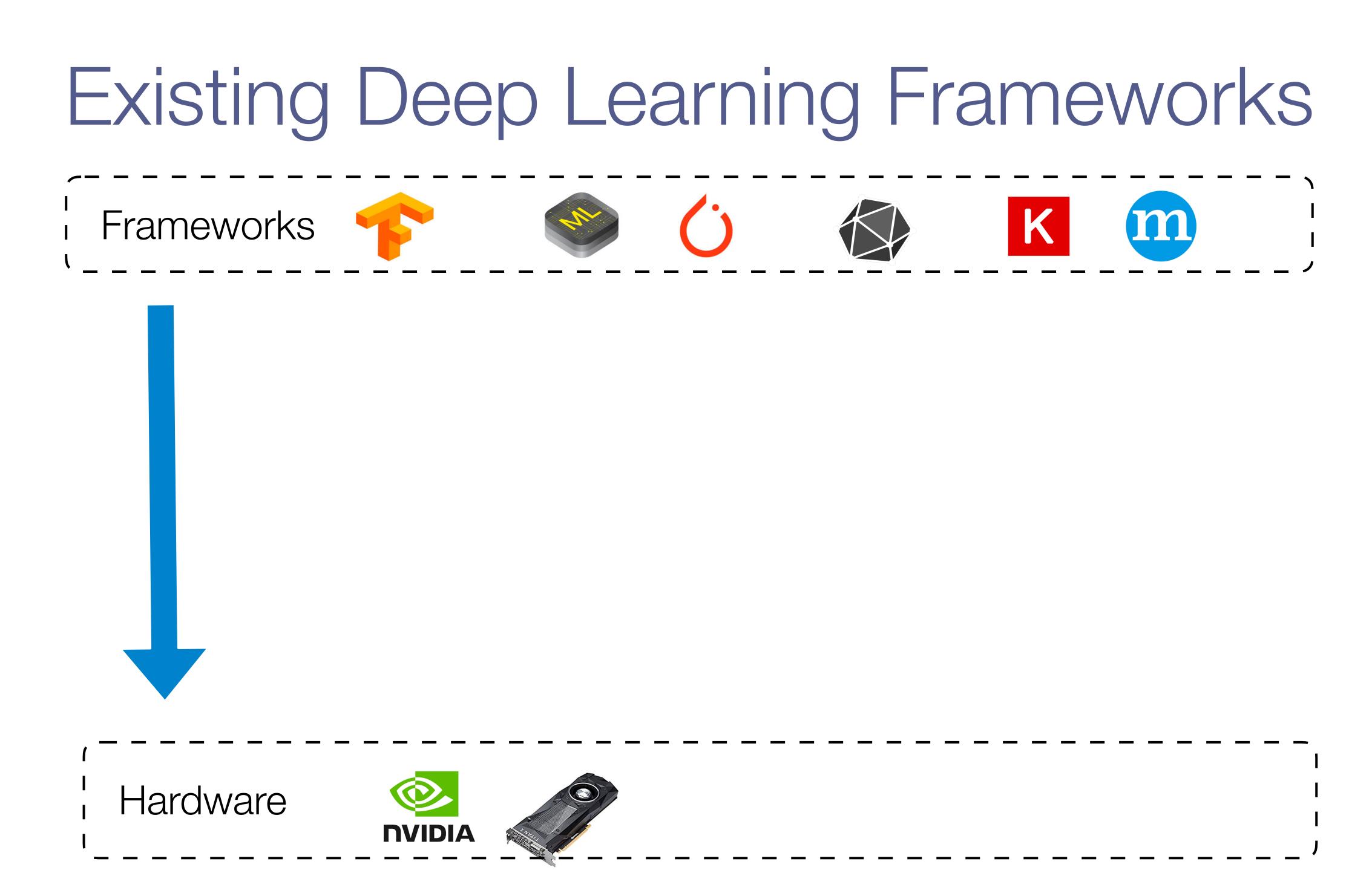


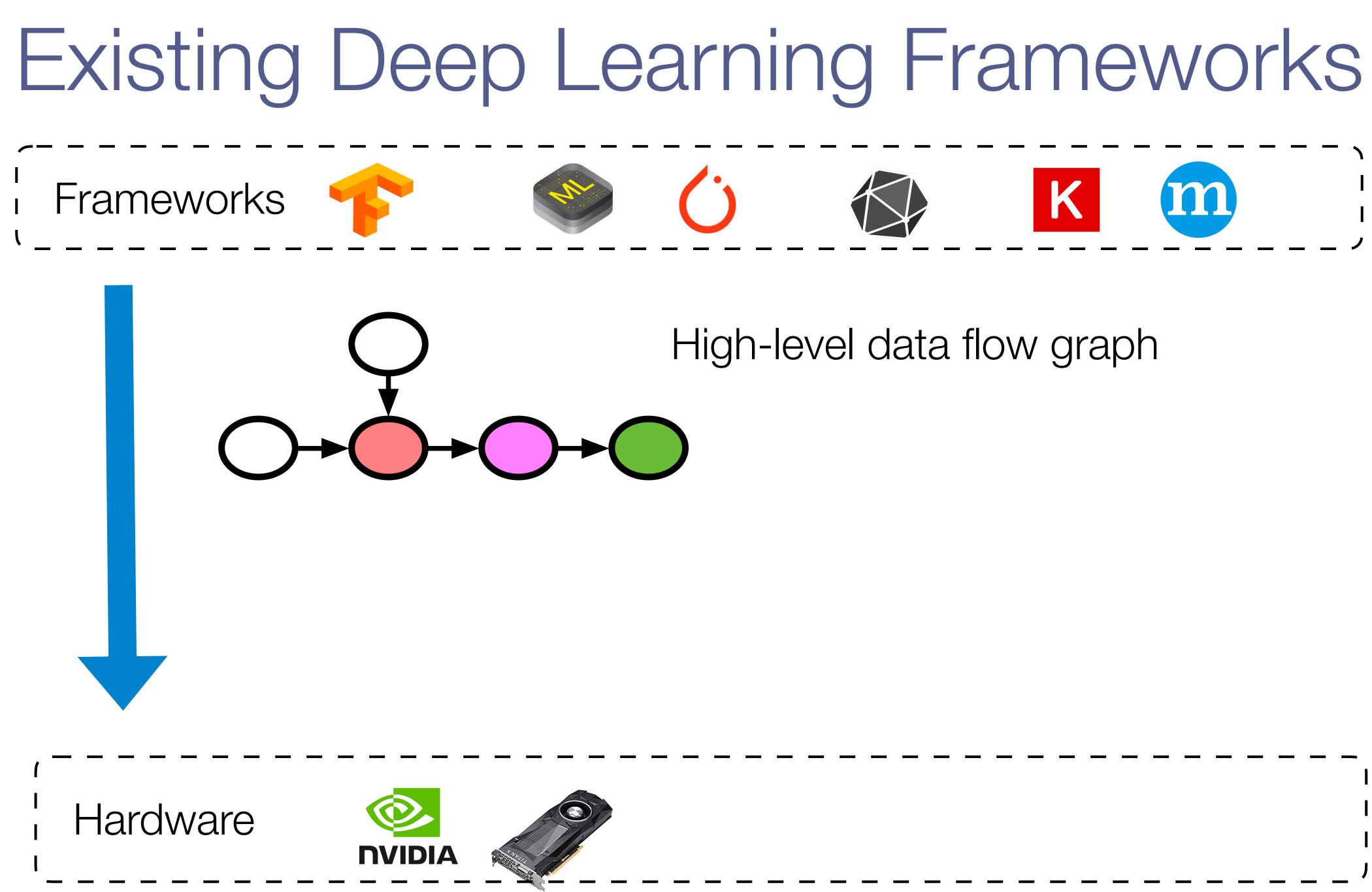
Hardware

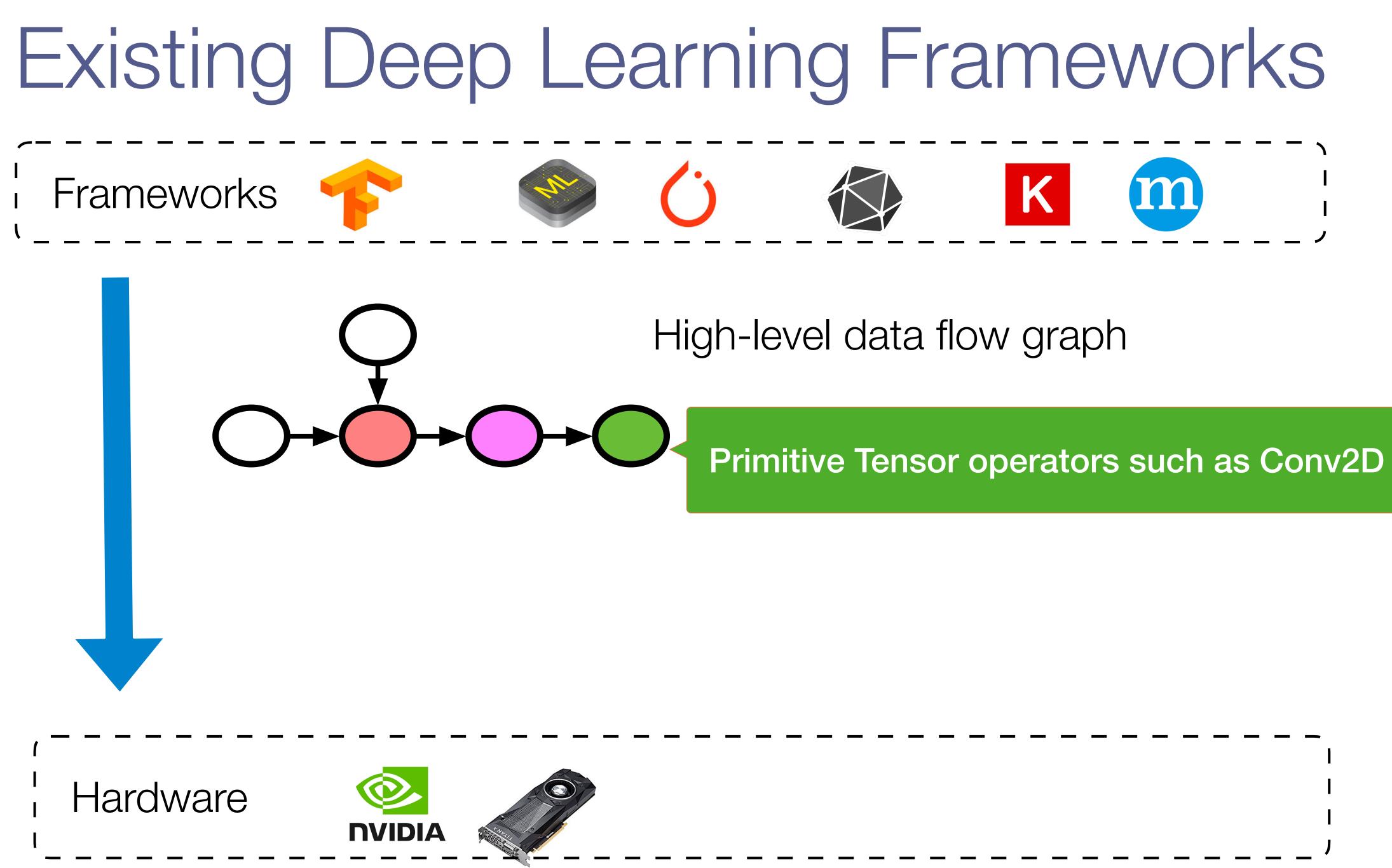


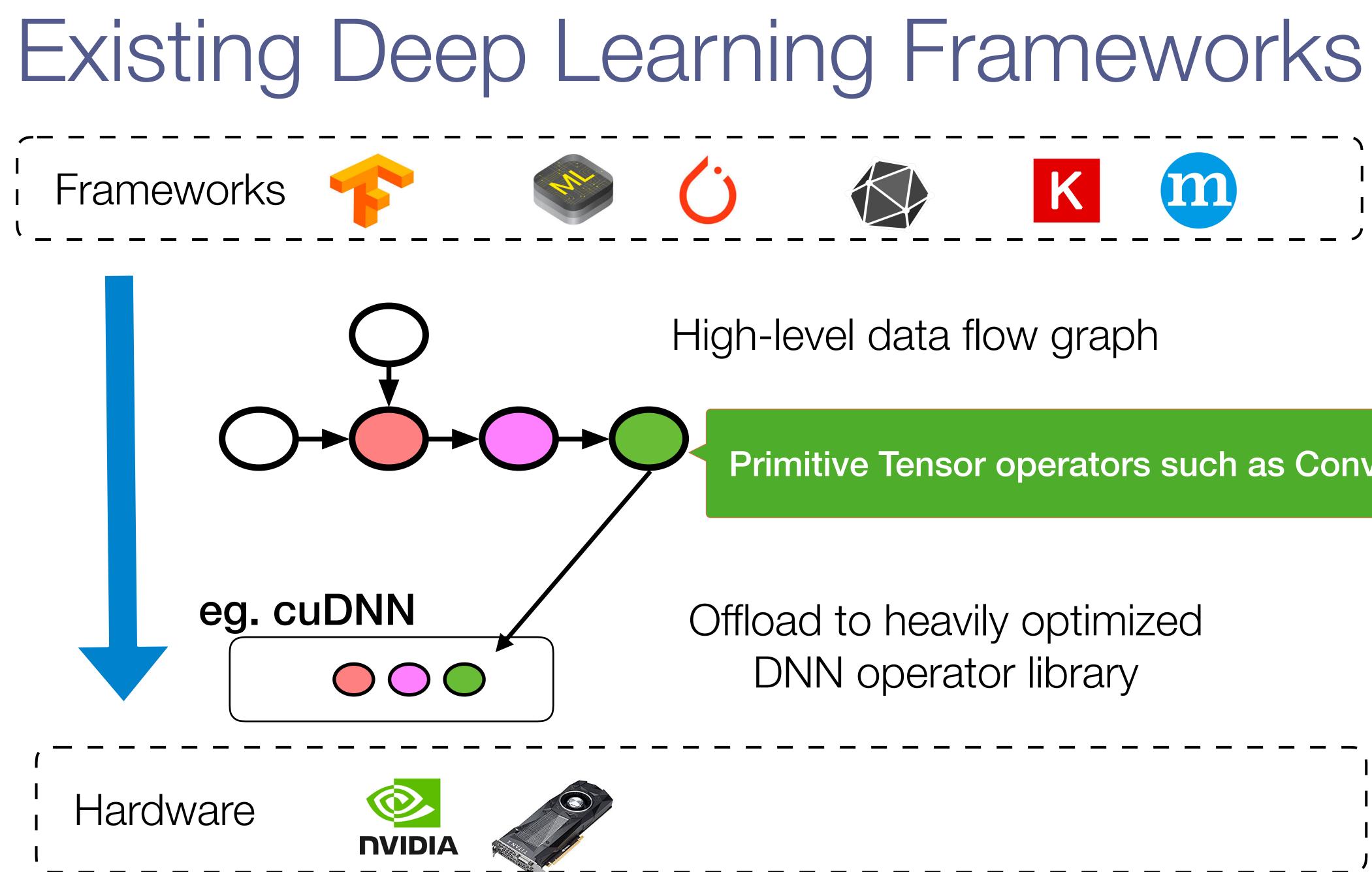
Hardware

end optimization framework for deep learning.



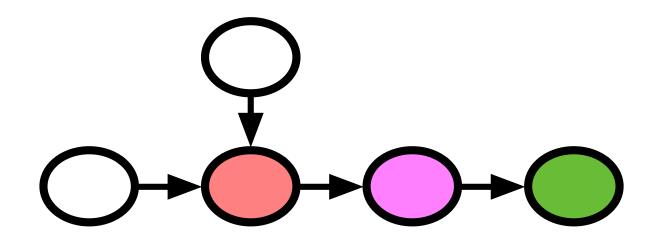




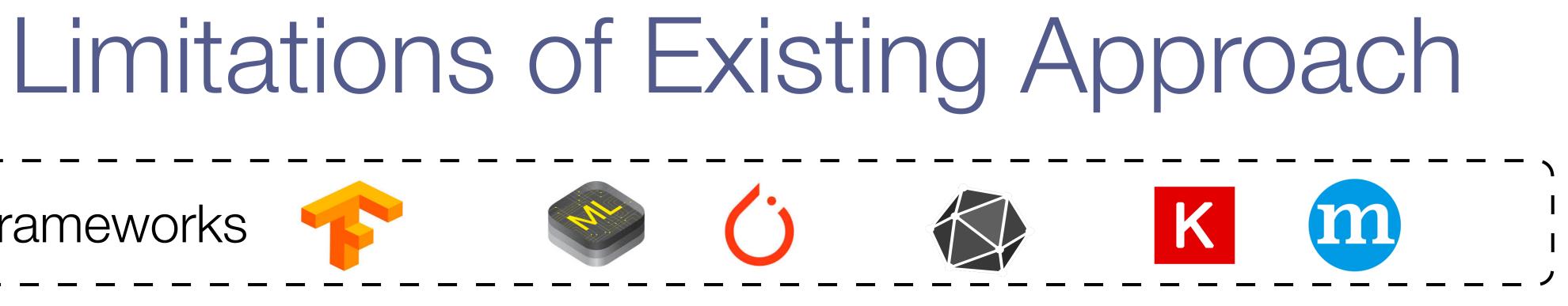


Primitive Tensor operators such as Conv2D

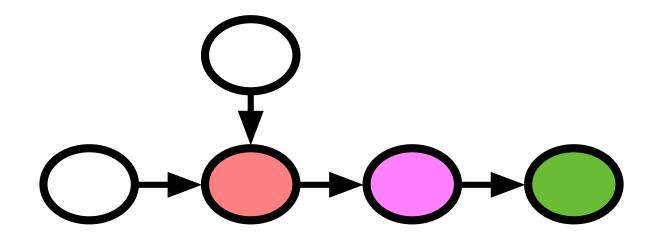
i Frameworks



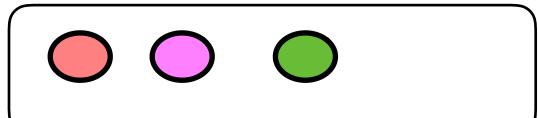
cuDNN

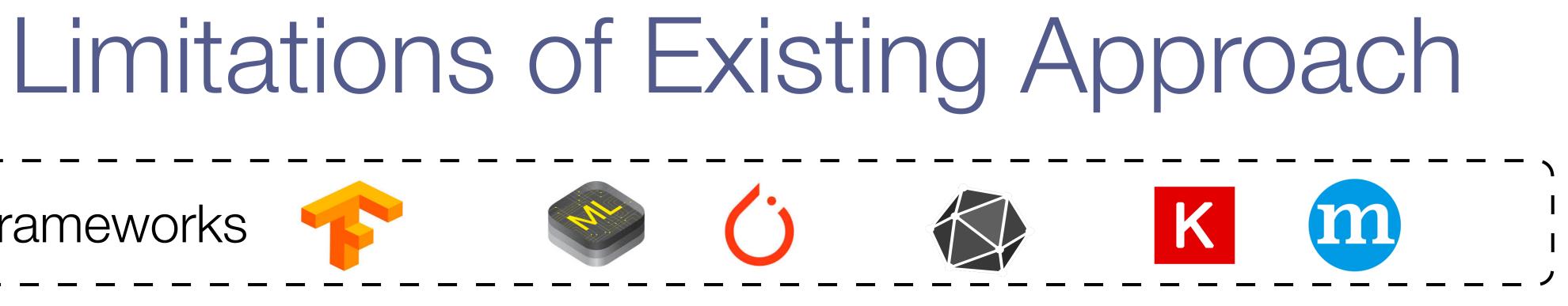


i Frameworks

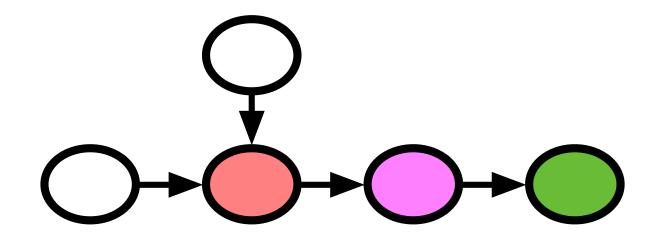


cuDNN

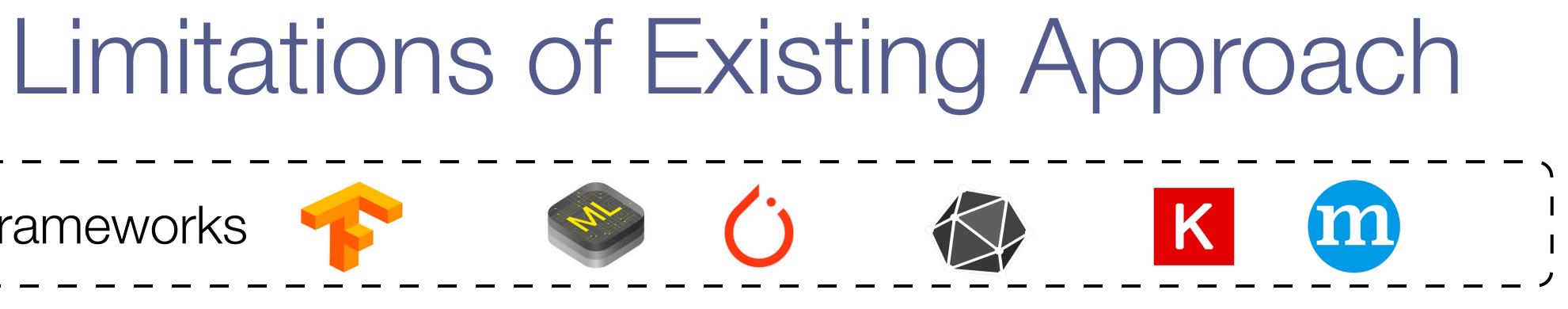




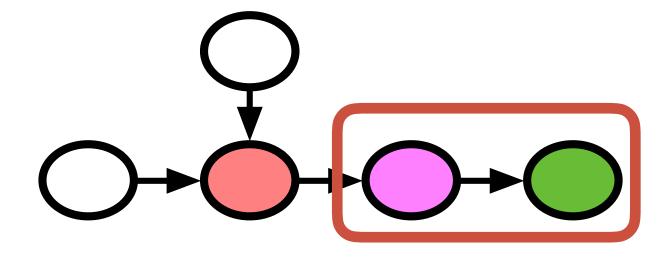
Frameworks



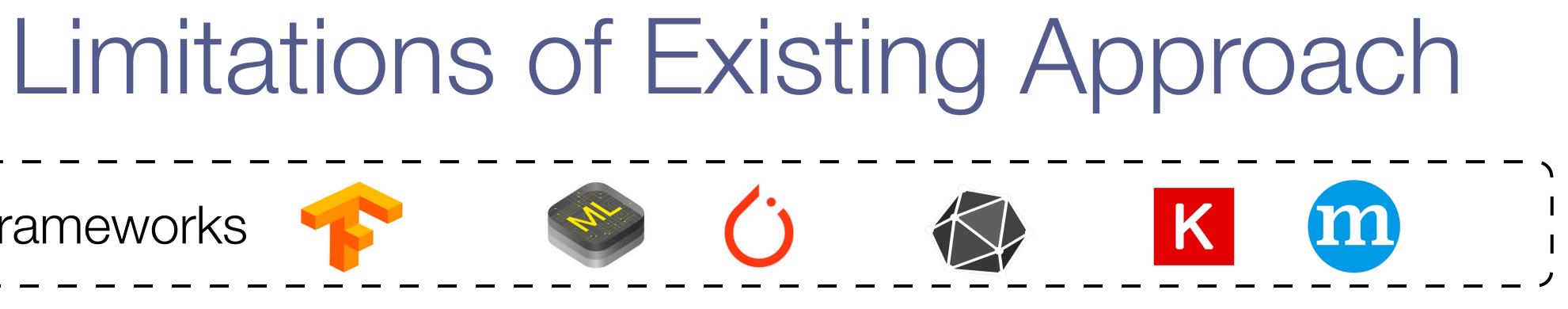
cuDNN NVIDIA

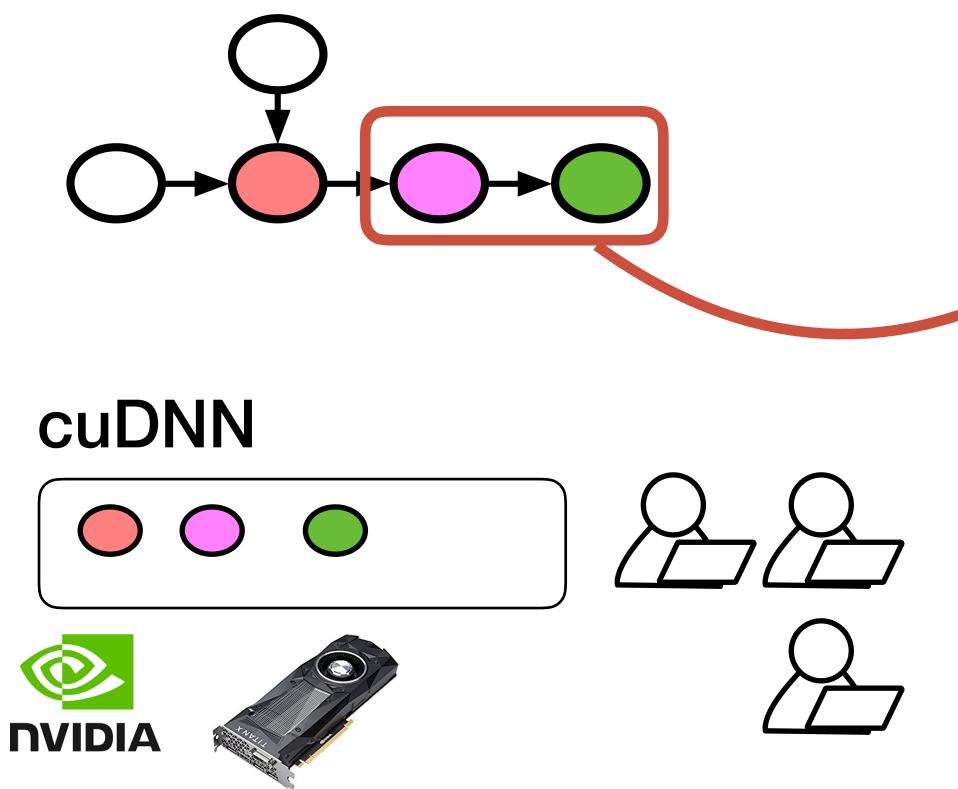


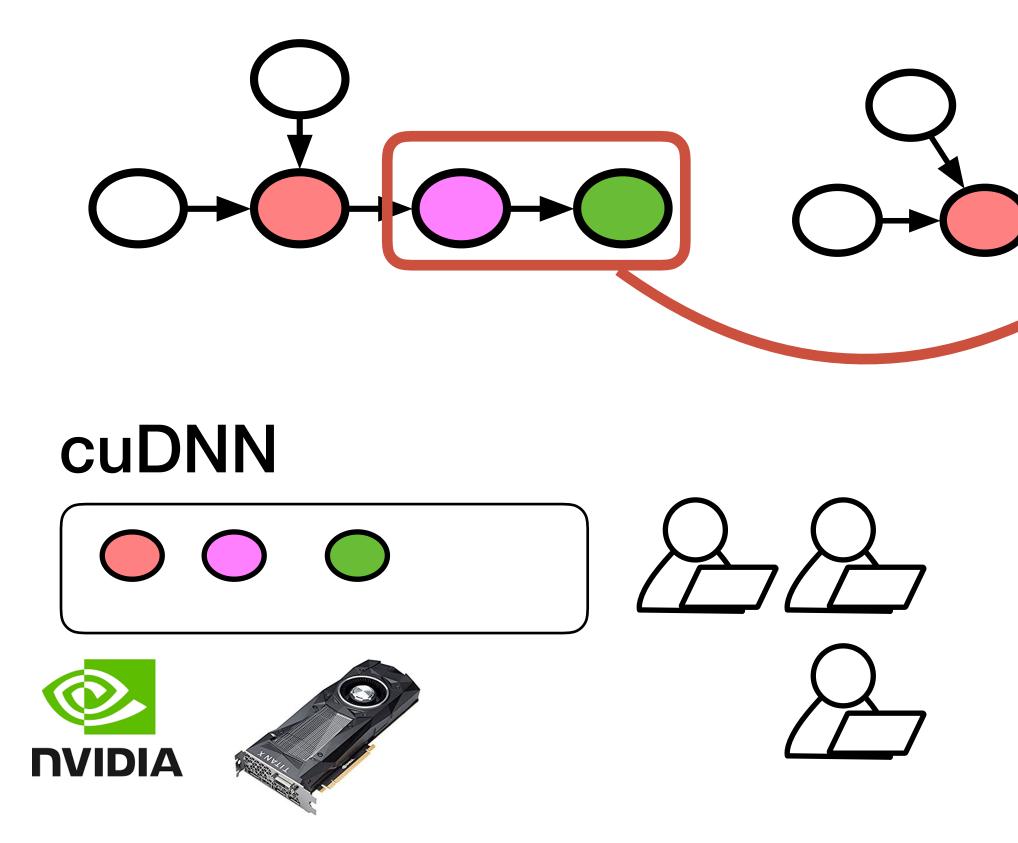
i Frameworks



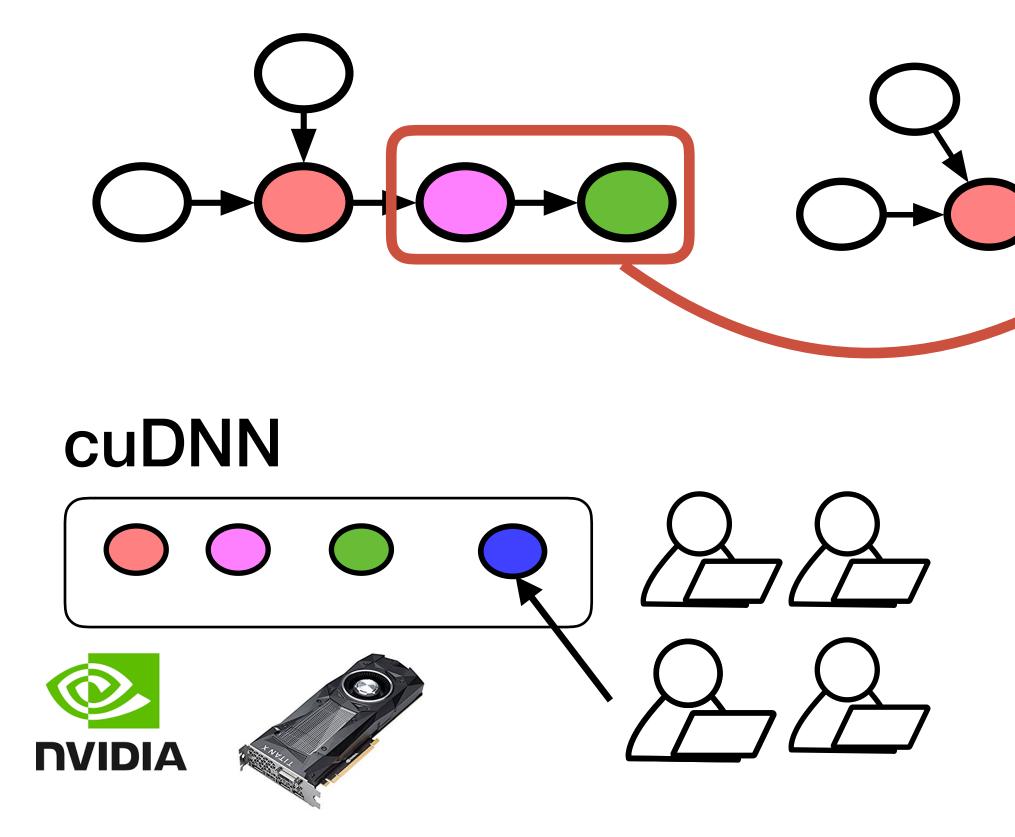
cuDNN NVIDIA



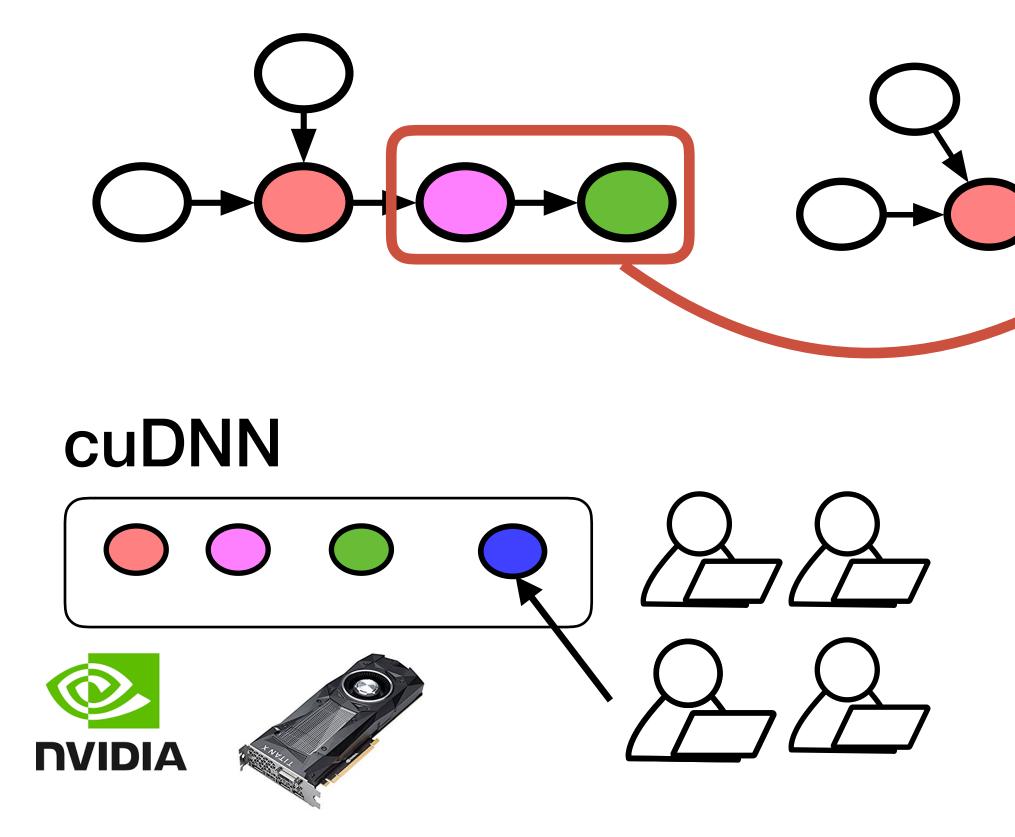




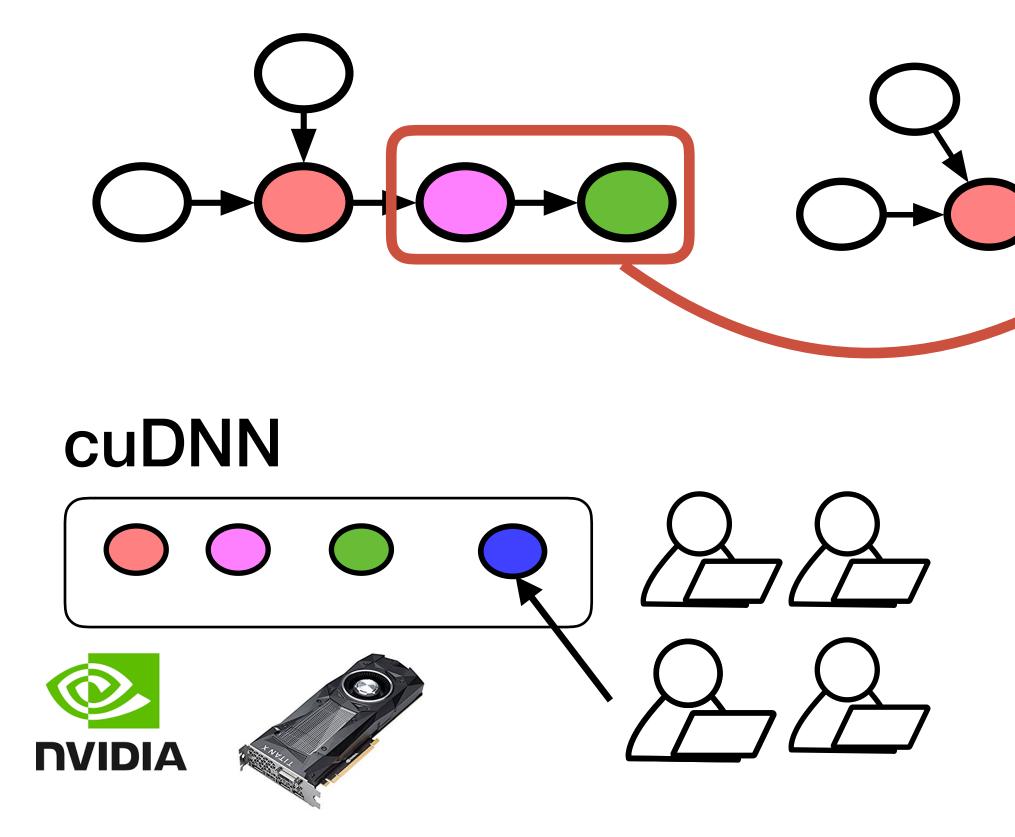
New operator introduced by operator fusion optimization potential benefit: 1.5x speedup



New operator introduced by operator fusion optimization potential benefit: 1.5x speedup

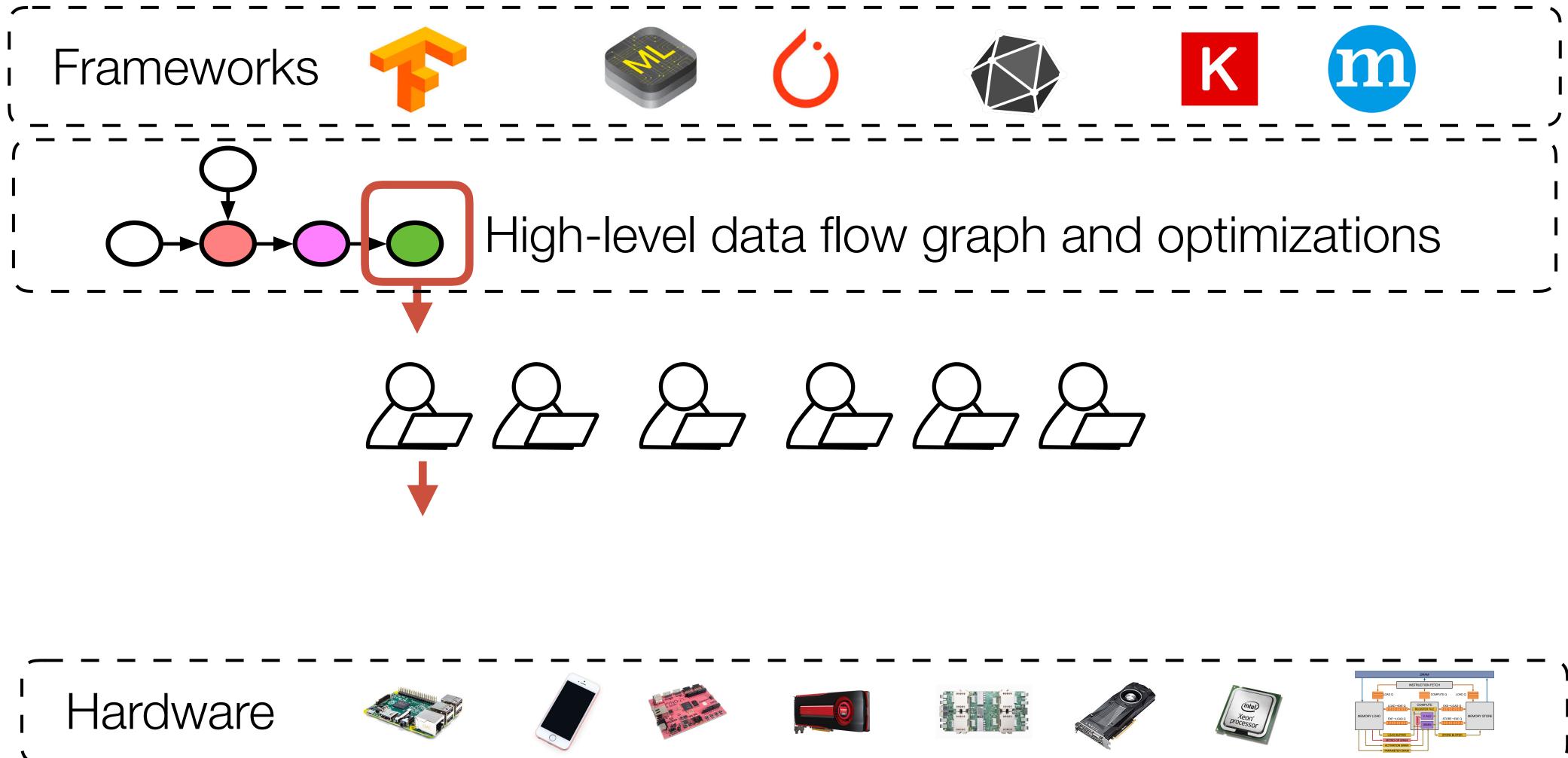


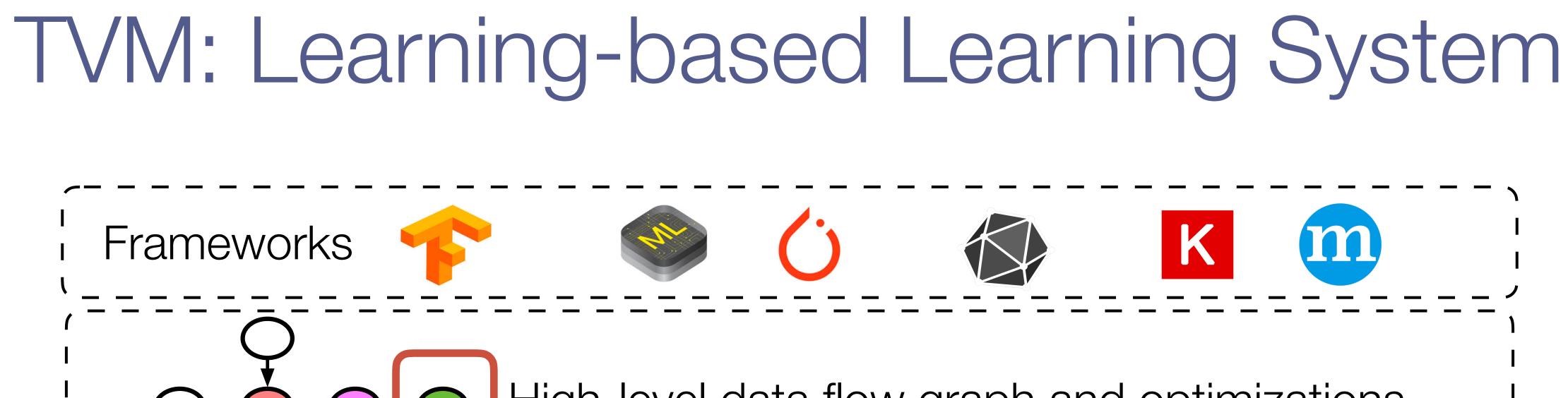
New operator introduced by operator fusion optimization potential benefit: 1.5x speedup

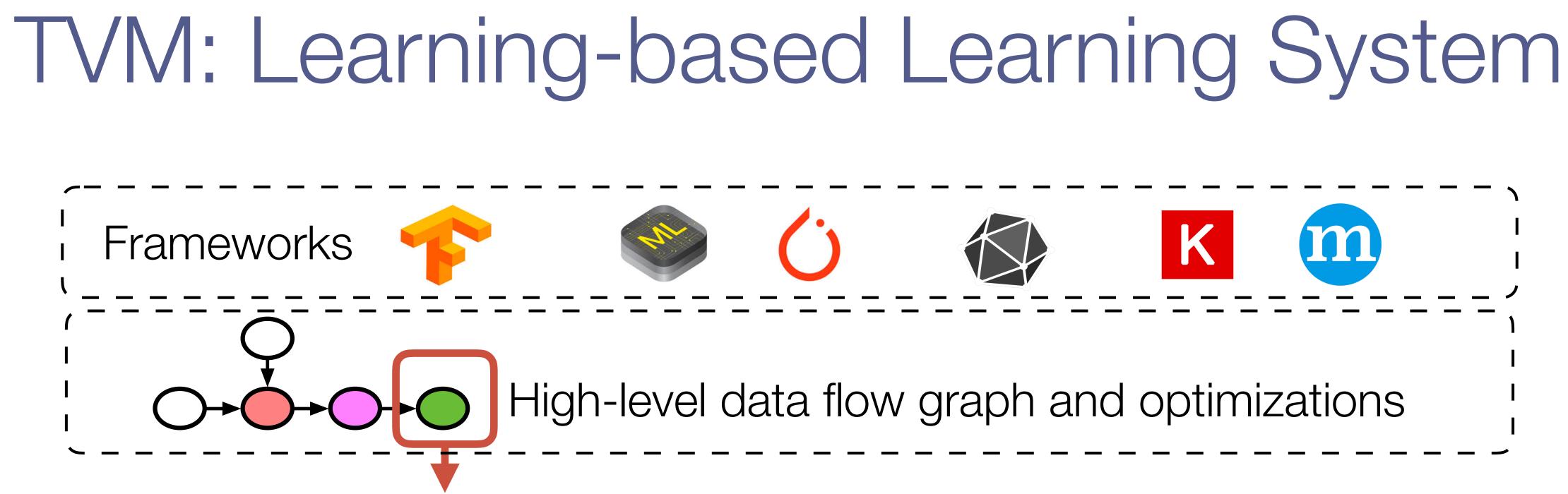


New operator introduced by operator fusion optimization potential benefit: 1.5x speedup

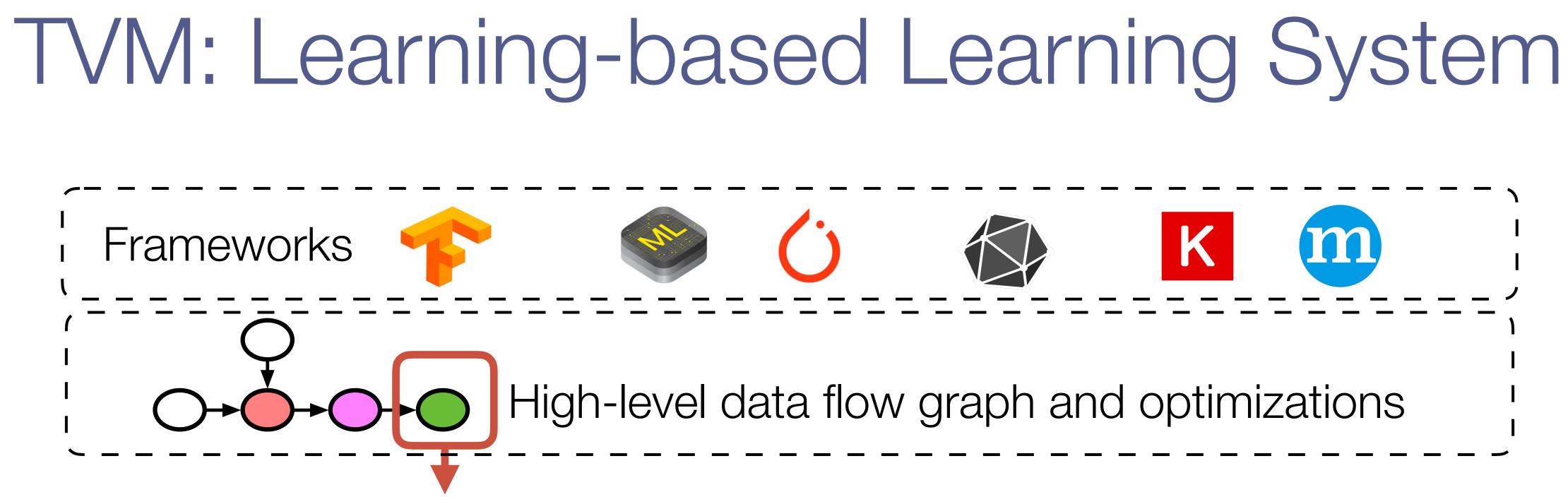
Engineering intensive



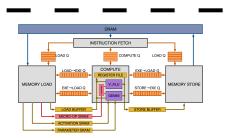


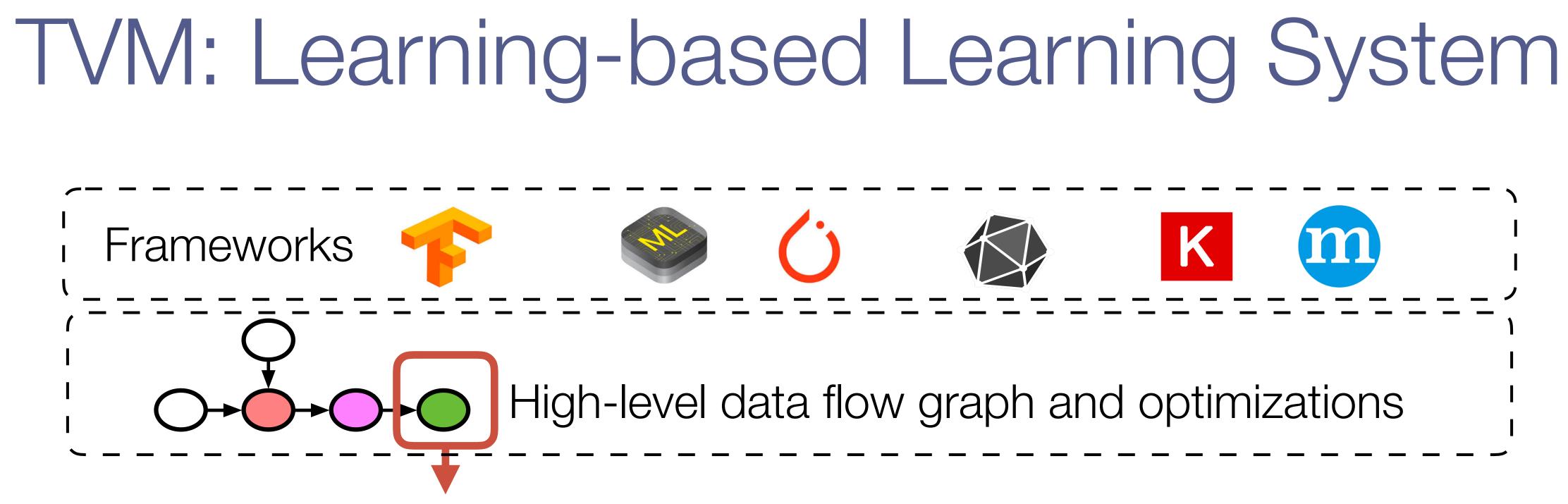






Machine Learning based Program Optimizer

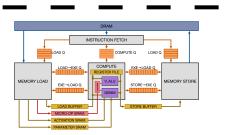




Machine Learning based Program Optimizer

Hardware

Directly generate optimized program for new operator workloads and hardware



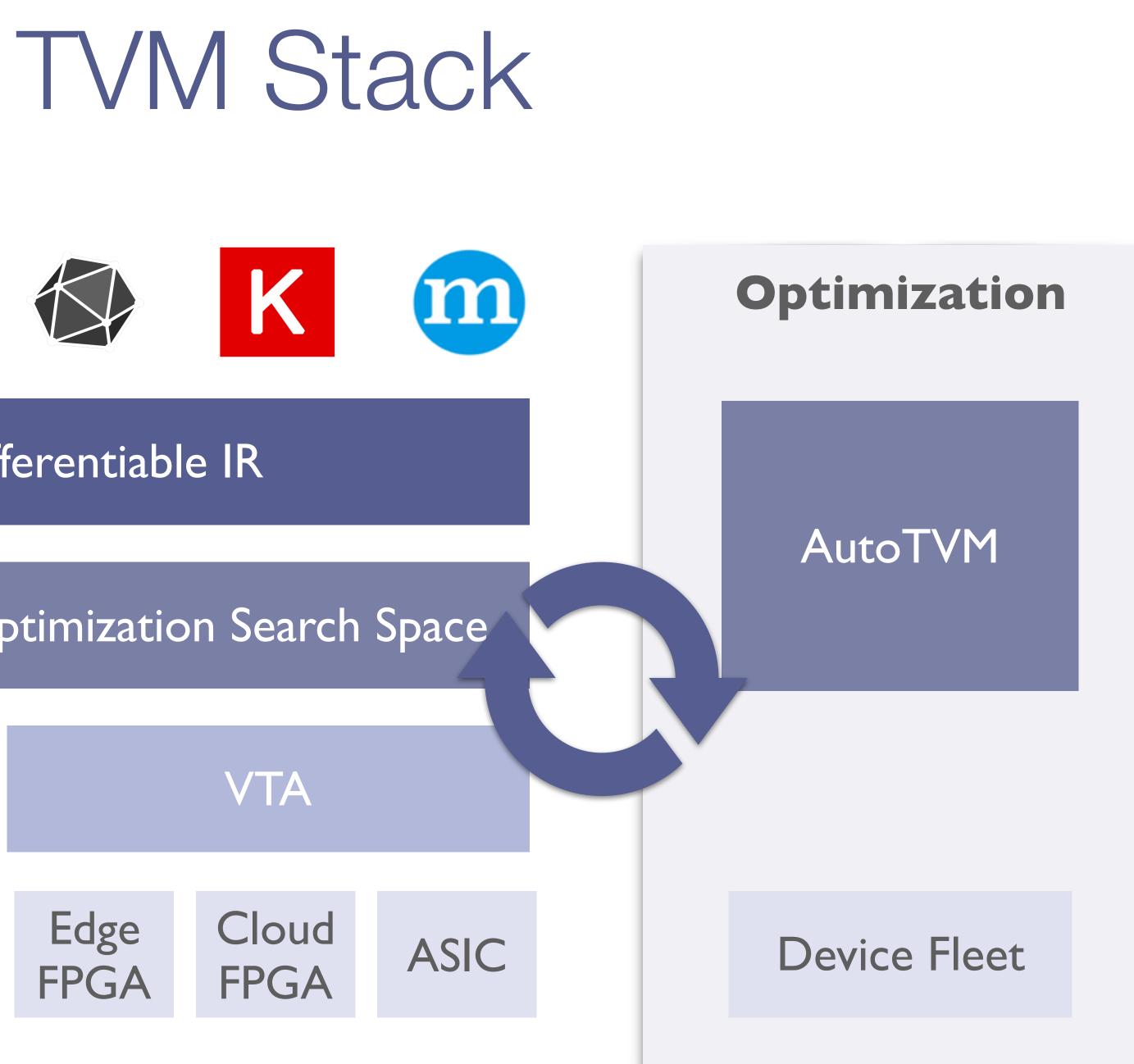
Why Automation is the Future

Clear winner on emerging models in product

Competitive on benchmarking type model

Quickly enables other optimizations: fusion, layout, parallelization

Portable performance across devices



High-Level Differentiable IR

Tensor Expression and Optimization Search Space

LLVM, CUDA, Metal

Community Highlights

More **Dynamism**

Tiny machine learning

Better core Infra

More Specialized Accelerator Support

Community Highlights

More **Dynamism**

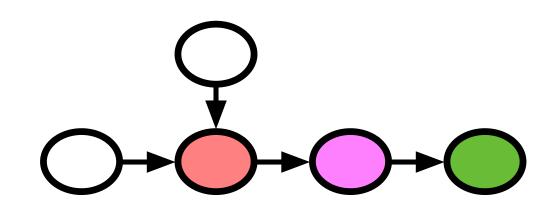
Tiny machine learning

Better core Infra

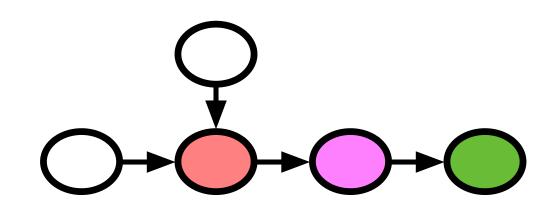
More Specialized Accelerator Support

Model

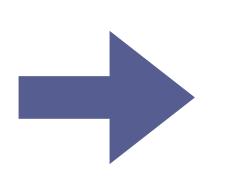
static computational graph

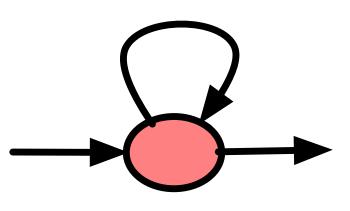


static computational graph

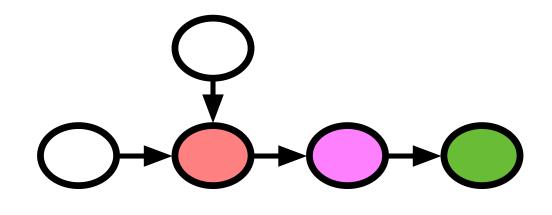


program with loops and recursions



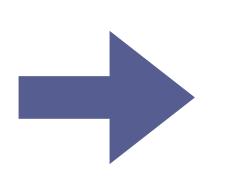


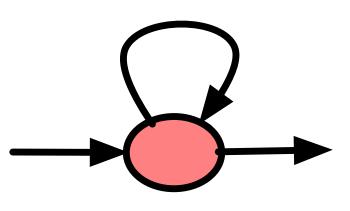
static computational graph



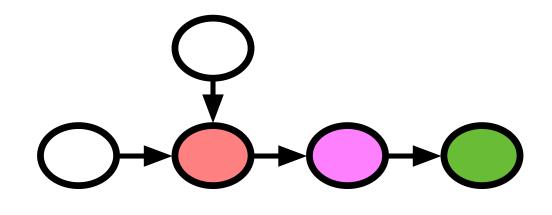
single tensor with known shape

program with loops and recursions



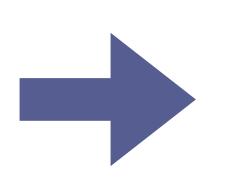


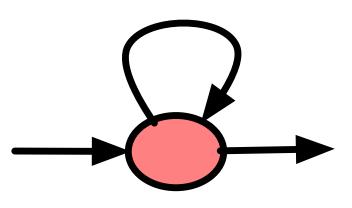
static computational graph



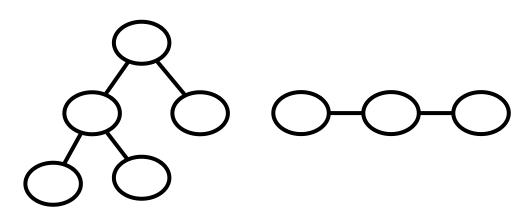
single tensor with known shape

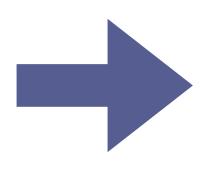
program with loops and recursions





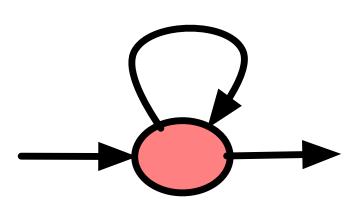
sequence, trees, nested data structure





Relay Virtual Machine

source program



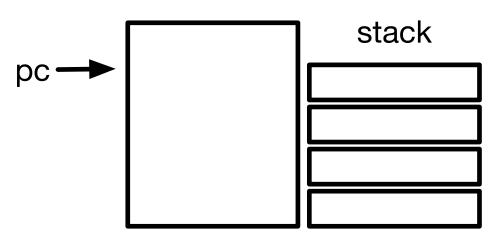
Dynamic shape workloads

More runtime objects: Arrays, Tuples, Trees, ADTs

Minimum runtime for dynamic models

Credit: Jared Roesch, Haichen Shen et.al

VM bytecode and runtime



Community Highlights

More **Dynamism**

Tiny machine learning

Better core Infra

More Specialized Accelerator Support

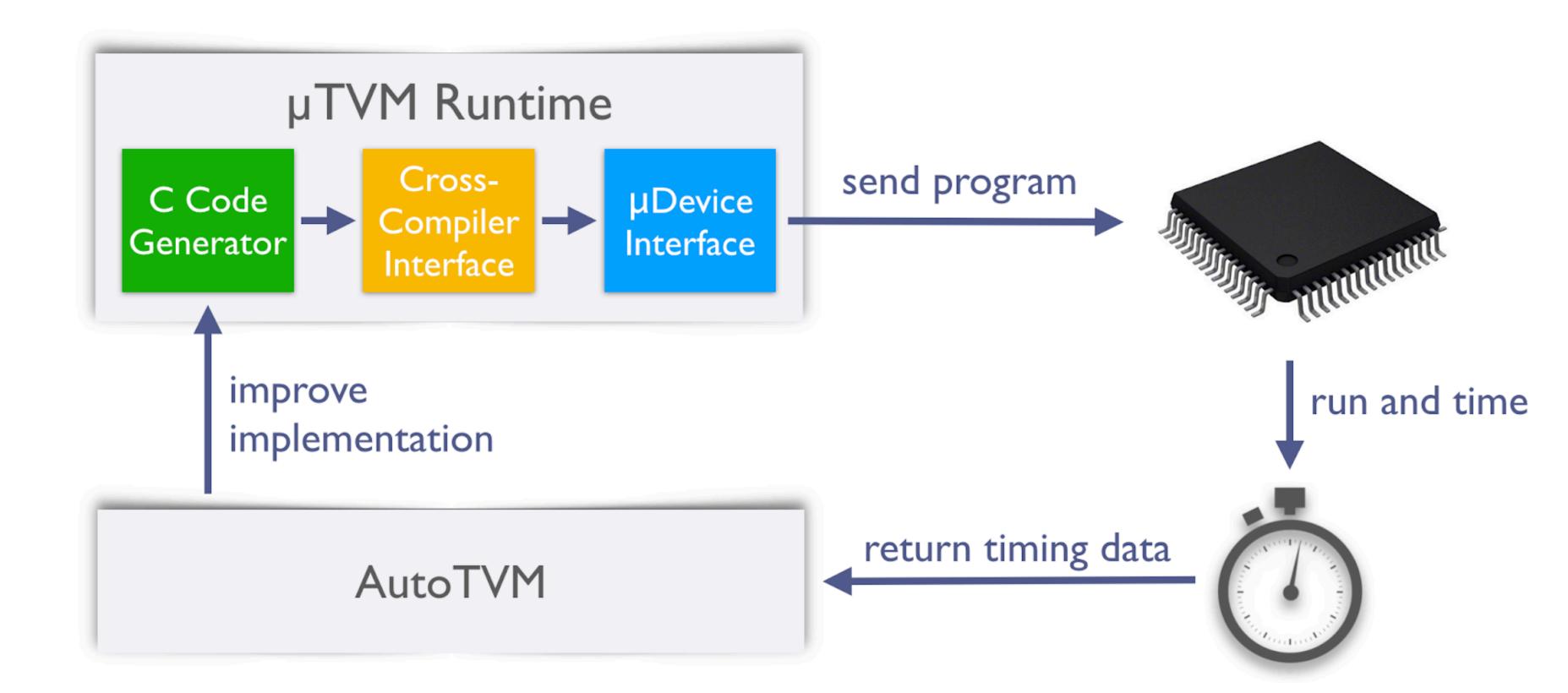
Machine Learning is Getting into Tiny Devices

Challenges: limited resources, OS support

uTVM: TVM on bare-metal Devices

Support bare-metal J-TAG devices, no OS is needed

ARM Cortex-M RISC-V



Credit: Logan Weber et al

Community Highlights

More **Dynamism**

Tiny machine learning

Better core Infra

More Specialized Accelerator Support

Core Infrastructure

New integer simplification and analysis

Unified runtime object protocol

Core Infrastructure

New integer simplification and analysis

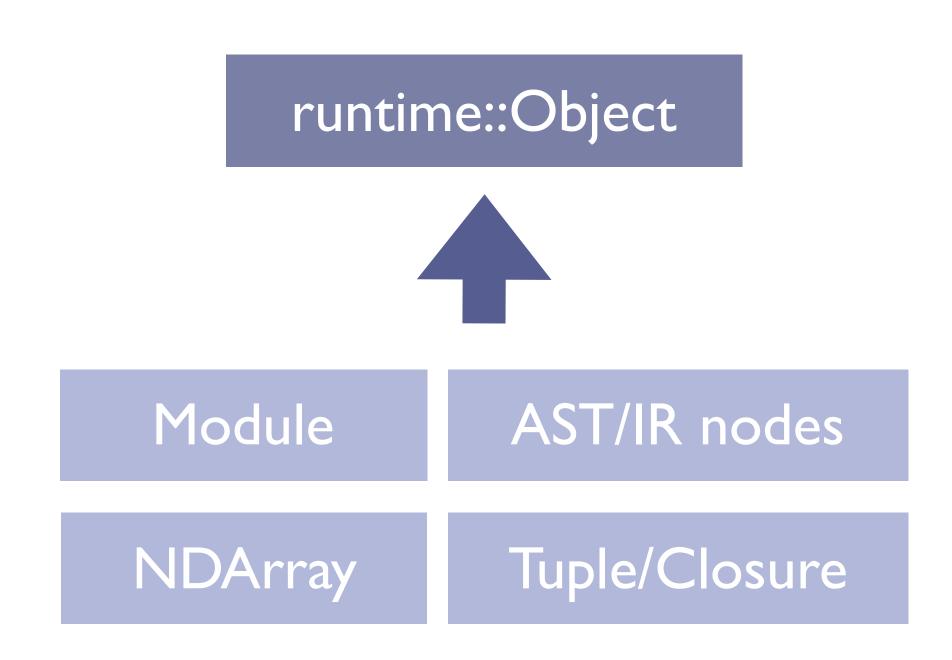
Unified runtime object protocol

Module	AST/IR nodes
NDArray	Tuple/Closure

Core Infrastructure

New integer simplification and analysis

Unified runtime object protocol



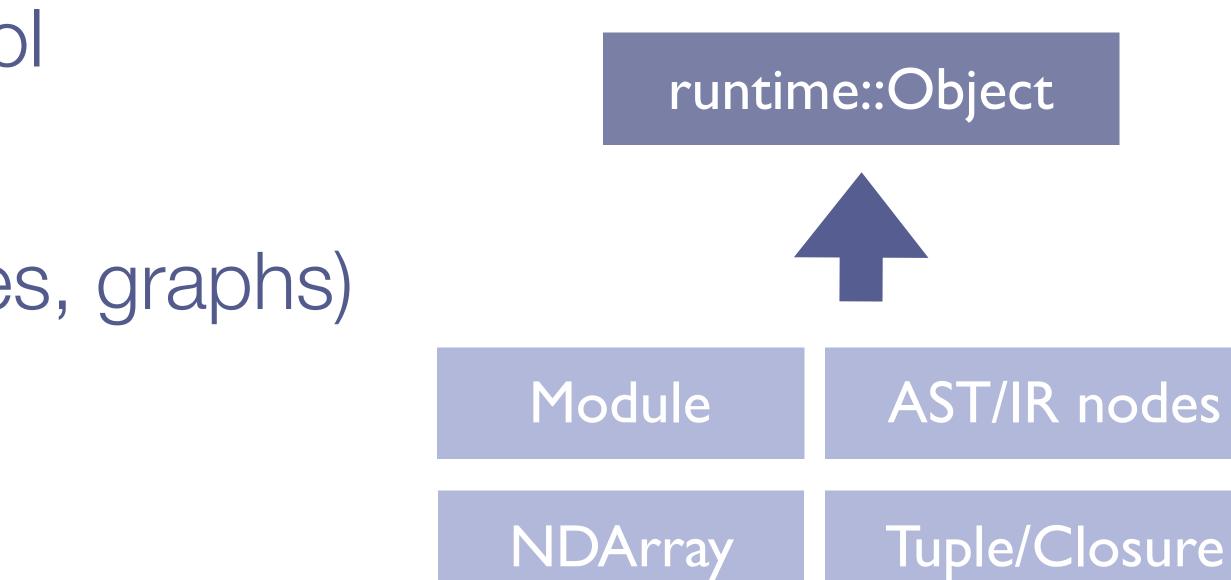
Core Infrastructure

New integer simplification and analysis

Unified runtime object protocol

Easy to add new objects (trees, graphs)

Cross language support



Community Highlights

More **Dynamism**

Tiny machine learning

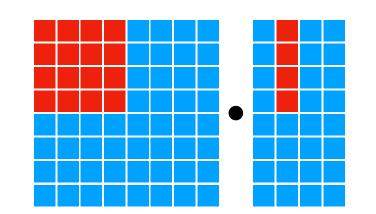
Better core **Infra**

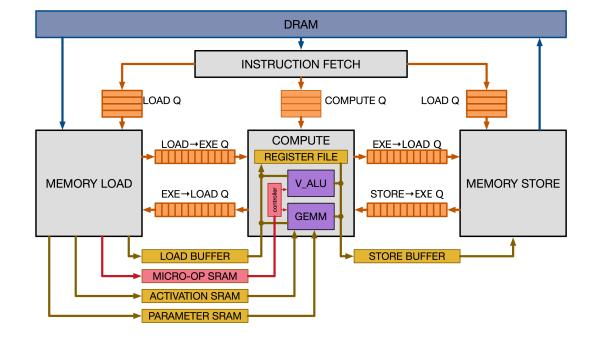
More Specialized Accelerator Support

Tensorization Challenge for Specialized Accelerators

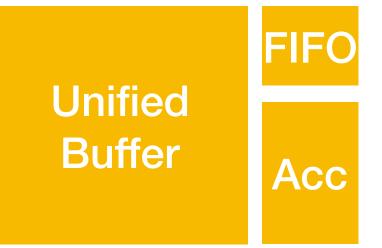
TPUs

Tensor Compute Primitives



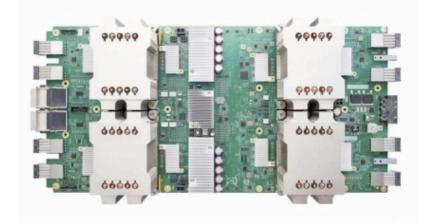


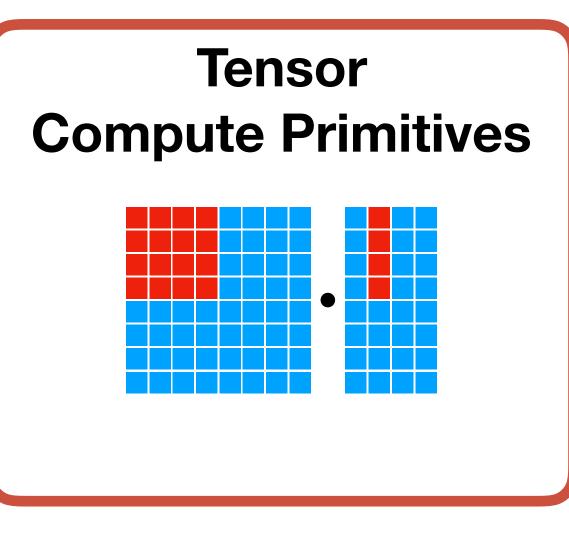
Explicitly Managed Memory Subsystem

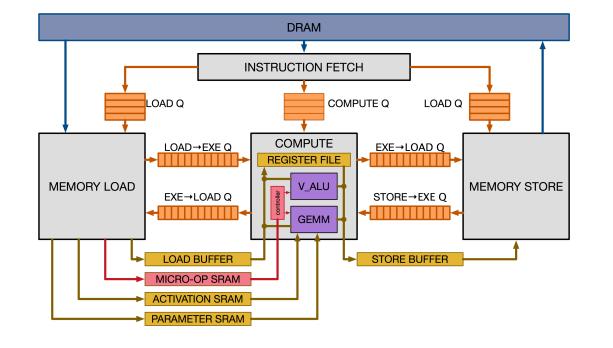


Tensorization Challenge for Specialized Accelerators

TPUs



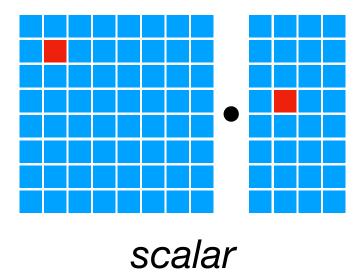




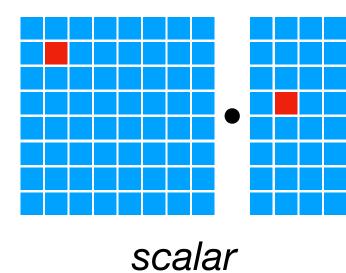
Explicitly Managed Memory Subsystem

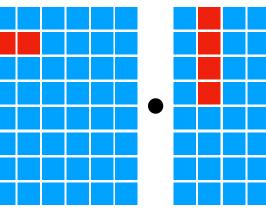
Compute primitives

Compute primitives



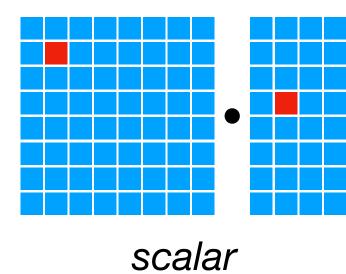
Compute primitives

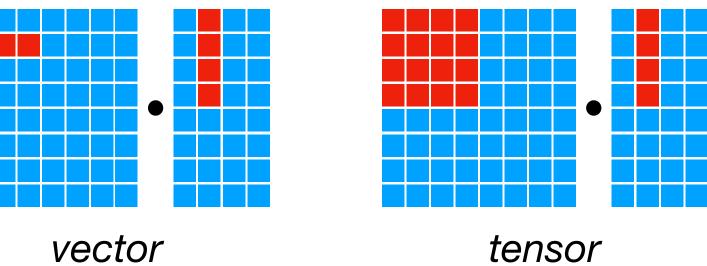


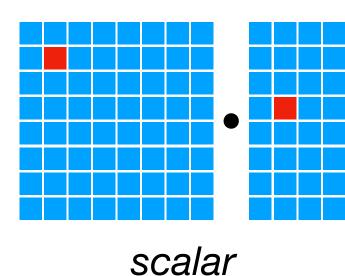


vector

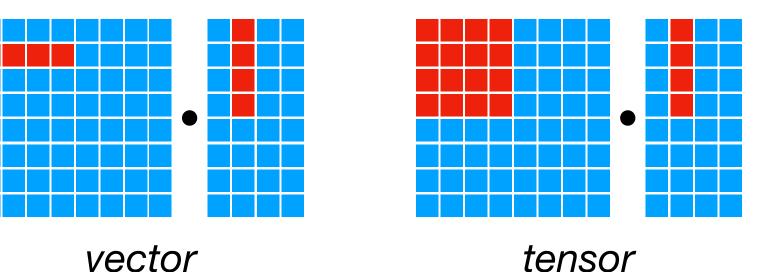
Compute primitives



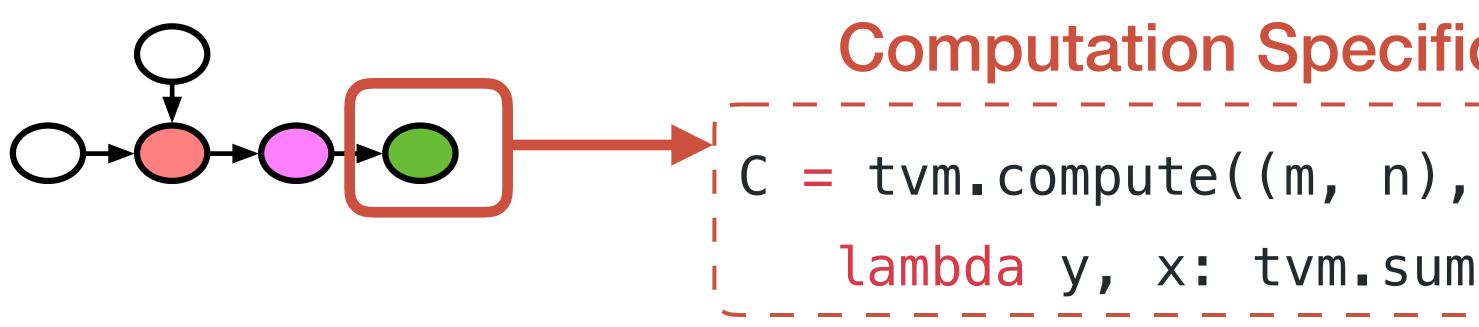




Compute primitives

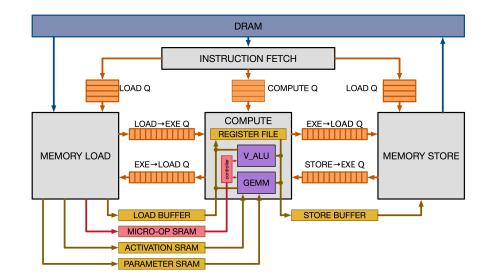


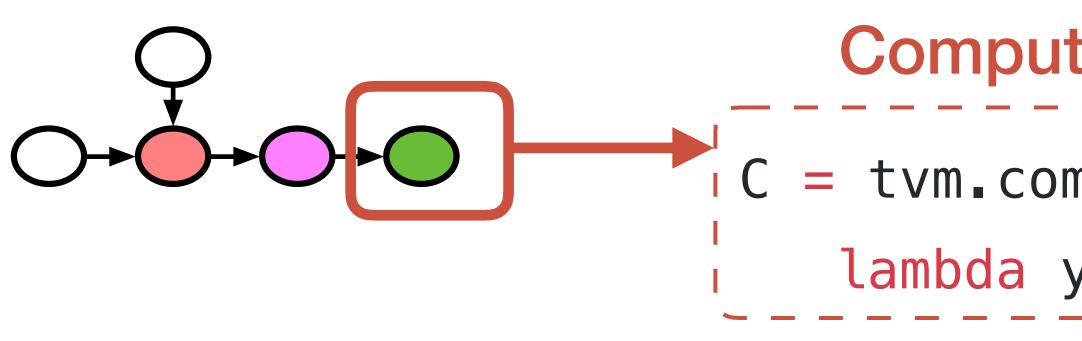
Challenge: Build systems to support emerging tensor instructions

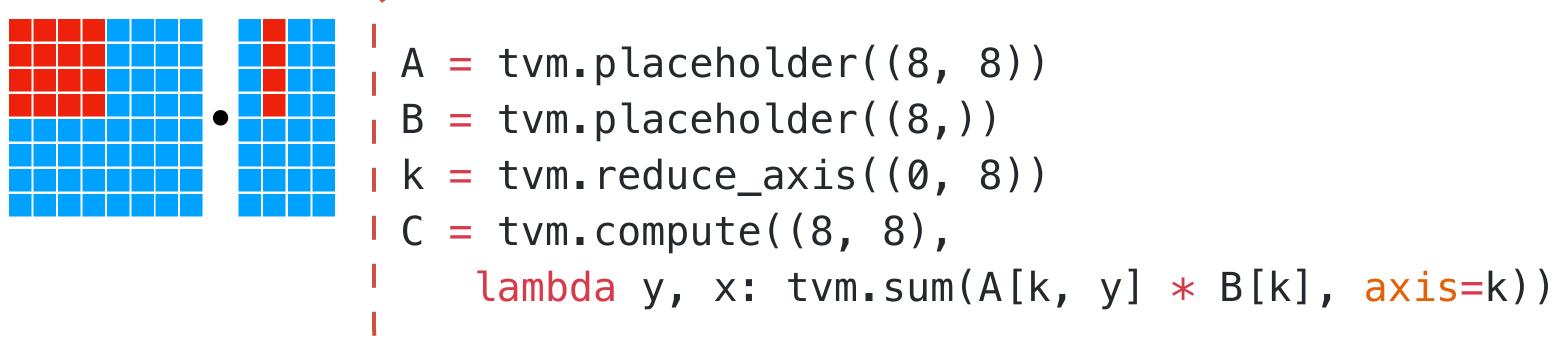


Computation Specification (Tensor Expression)

- lambda y, x: tvm.sum(A[k, y] * B[k, x], axis=k))



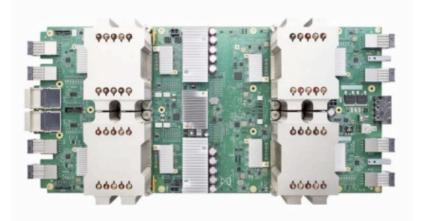


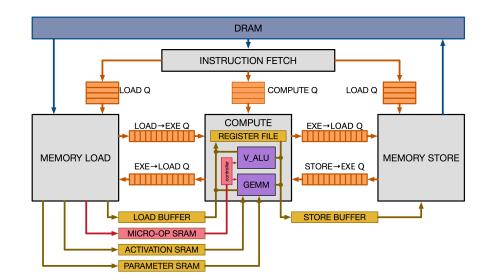


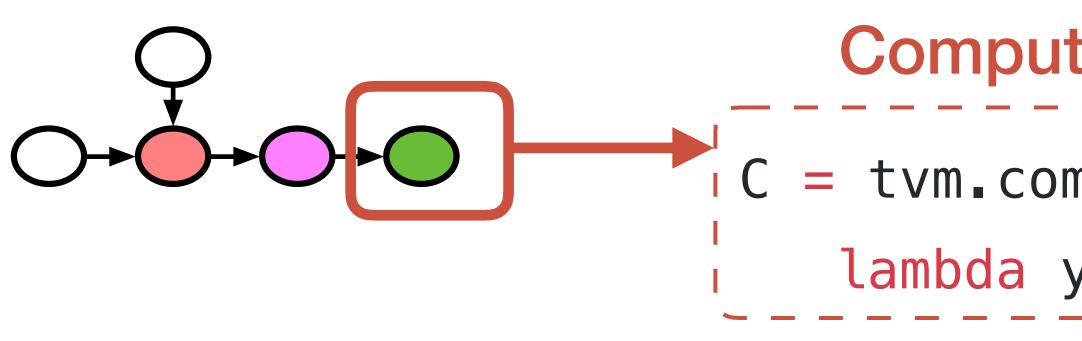
HW Interface Specification by Tensor Expression

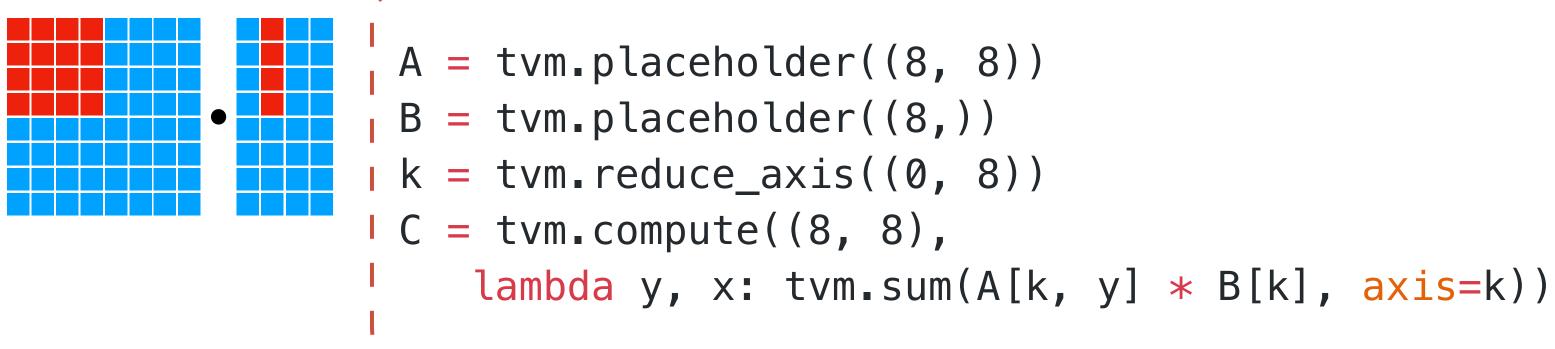
Computation Specification (Tensor Expression)

- C = tvm.compute((m, n),
 - lambda y, x: tvm.sum(A[k, y] * B[k, x], axis=k))







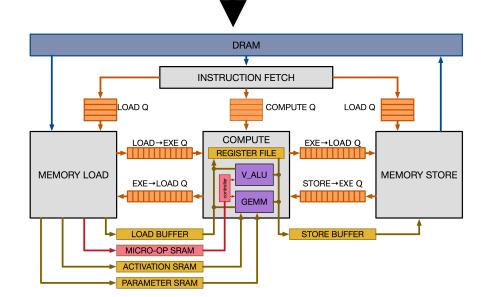


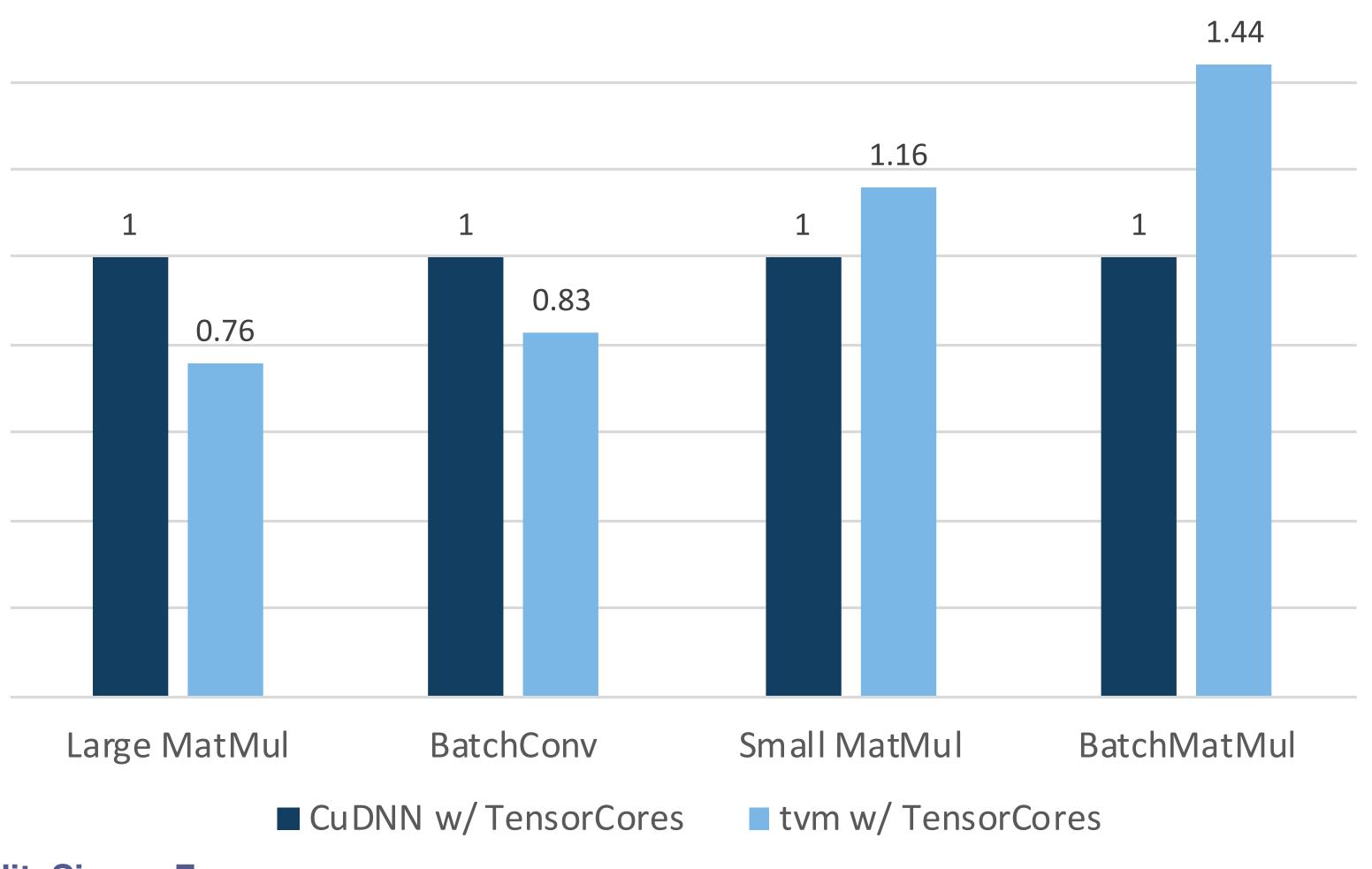
HW Interface Specification by Tensor Expression

Computation Specification (Tensor Expression)

- C = tvm.compute((m, n),
 - lambda y, x: tvm.sum(A[k, y] * B[k, x], axis=k))

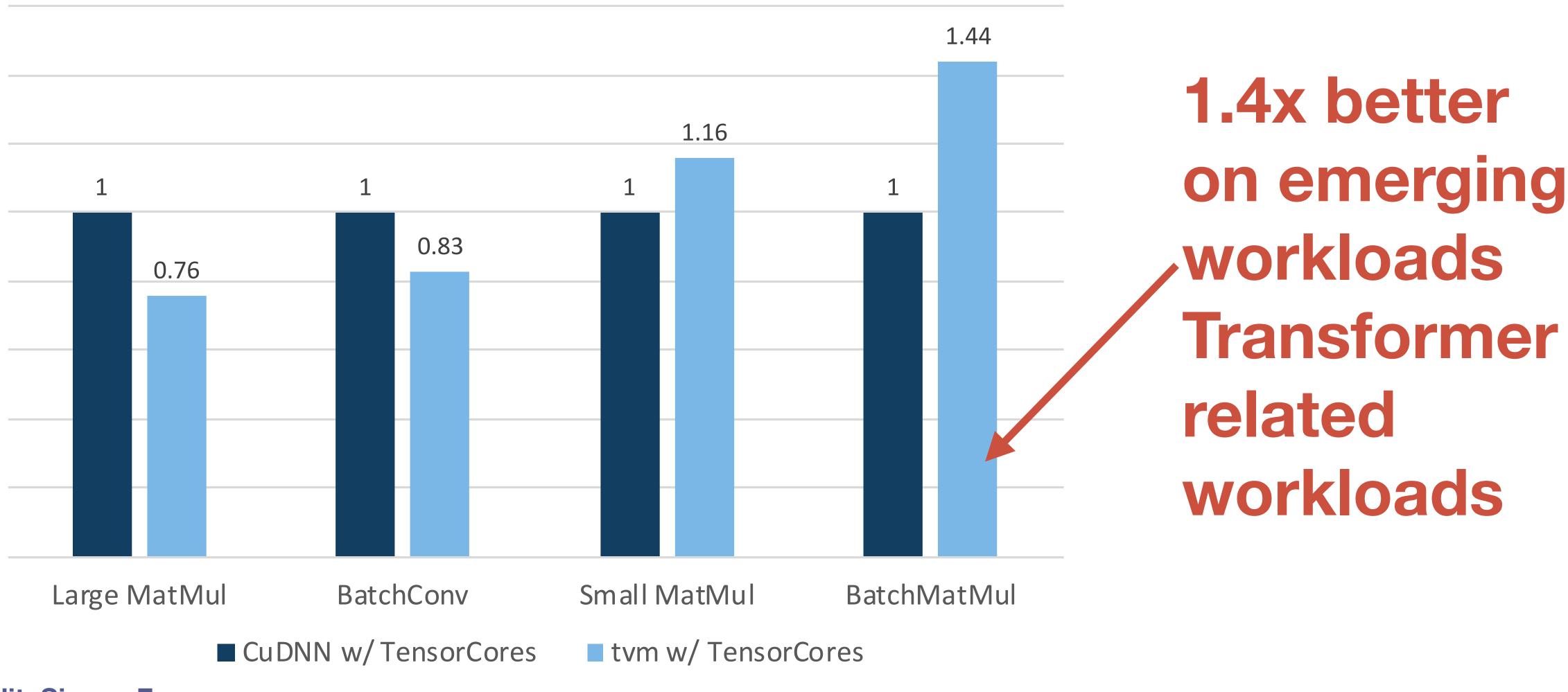
Tensorization





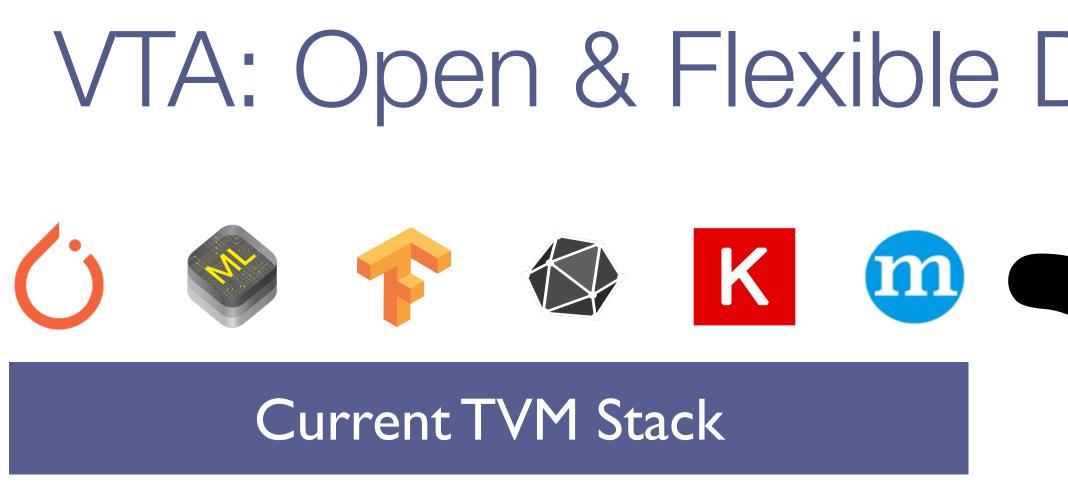
Credit: Siyuan Feng

TVM for TensorCore



Credit: Siyuan Feng

TVM for TensorCore



VTA Runtime & JIT Compiler

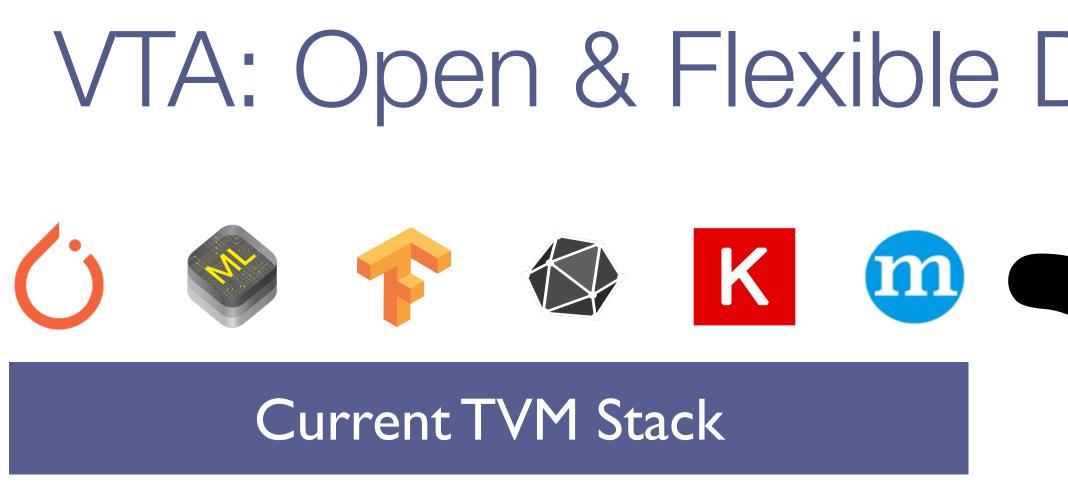
VTA Hardware/Software Interface (ISA)

<section-header><section-header><complex-block><image><image><image><image>

HW-SW Blueprint for Flexible Deep Learning Acceleration. Moreau et al. IEEE Micro 2019.

VTA: Open & Flexible Deep Learning Accelerator

compiler, driver, hardware design full stack open source



VTA Runtime & JIT Compiler

VTA Hardware/Software Interface (ISA)

VTA Simulator **VTA MicroArchitecture** u 😔 🔗 🖉 🗊 🗃 🗊 🖬 😒 👄 🤜 🏹 🔟 🔭 📿 🏵 🔯 🔟 ĨĨ amazon webservices

HW-SW Blueprint for Flexible Deep Learning Acceleration. Moreau et al. IEEE Micro 2019.

VTA: Open & Flexible Deep Learning Accelerator

- Runtime JIT compile accelerator micro code
- Support heterogenous devices, 10x better than CPU on the same board.
- Move hardware complexity to software

 VTA 2.0 release - Chisel compiler, driver, hardware design full stack open source

TSIM: Support for Future Hardware

Current TVM Stack

New NPU Runtime

TSIM Driver

Credit: Luis Vega, Thierry Moureau

TSIM: Support for Future Hardware

Current TVM Stack

New NPU Runtime

TSIM Driver

TSIM Binary

Credit: Luis Vega, Thierry Moureau

New Hardware Design in Verilog

Verilator

TSIM: Support for Future Hardware

Current TVM Stack

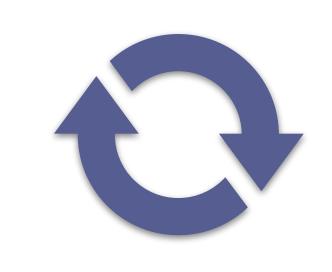
New NPU Runtime

TSIM Driver

TSIM Binary

Credit: Luis Vega, Thierry Moureau

New Hardware Design in Verilog



Verilator

Where are we going: Selected Topics

Unified Runtime

Unified IR

Full-stack Automation

Where are we going: Selected Topics

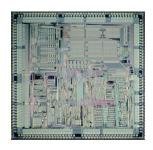
Unified Runtime

Unified IR

Full-stack Automation

NPU Driver

Device Drivers

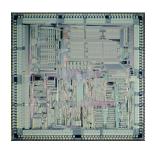


CUDA Driver

tvm::runtime::Module

NPU Driver

Device Drivers

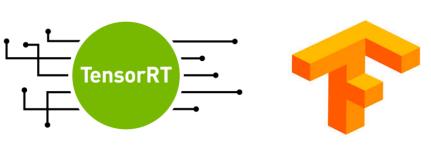


CUDA Driver

Runtime Module Interface

GetFunction(string) -> tvm::runtime::PackedFunc

SaveToBinary/LoadFromBinary

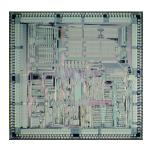


tvm::runtime::Module

NPUModule

NPU Driver

Device Drivers



CUDAModule

CUDA Driver

Runtime Module Interface

GetFunction(string) -> tvm::runtime::PackedFunc

SaveToBinary/LoadFromBinary

TFModule

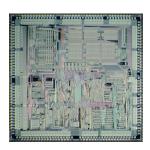
tvm::runtime::Module

Subclasses

NPUModule

NPU Driver

Device Drivers



CUDAModule

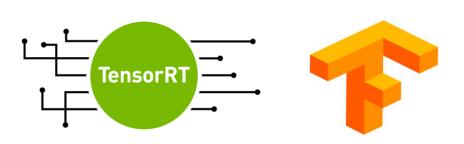
CUDA Driver

Runtime Module Interface

GetFunction(string) -> tvm::runtime::PackedFunc

SaveToBinary/LoadFromBinary

External Runtimes



Unified Runtime Benefit

Unified library packaging

Free API (Py/Java/Go)

Automatic RPC Support

mod.export_library("mylib.so")

```
lib = tvm.module.load("mylib.so")
func = lib["npufunction0"]
func(a, b)
```

```
remote = tvm.rpc.connect(board_url, port)
remote.upload("mylib.so")
remote_mod = remote.load_module("mylib.so")
func = remote_mod["npufunction0"]
func(remote_a, remote_b)
```

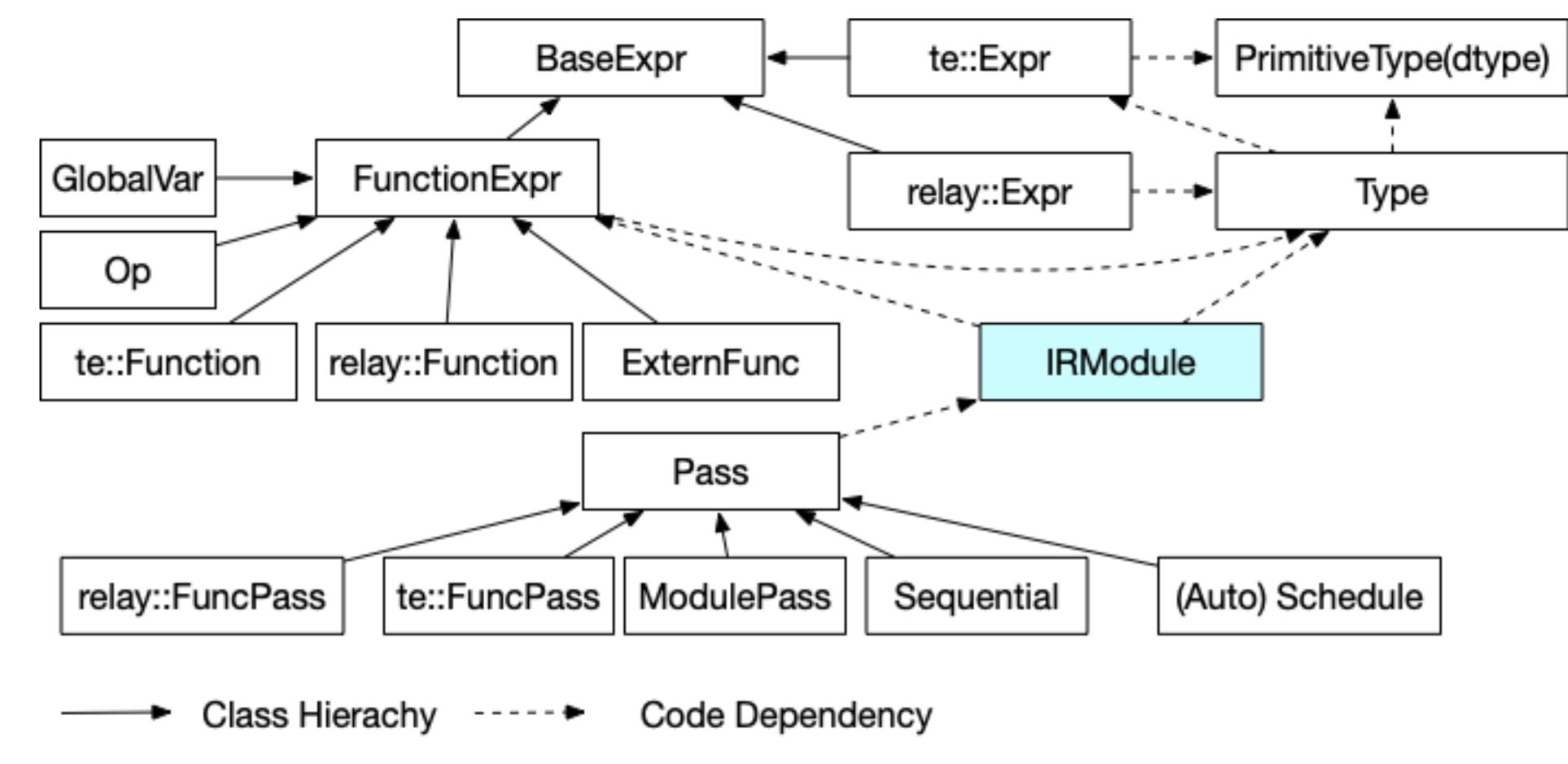

Where are we going: Selected Topics

Unified Runtime

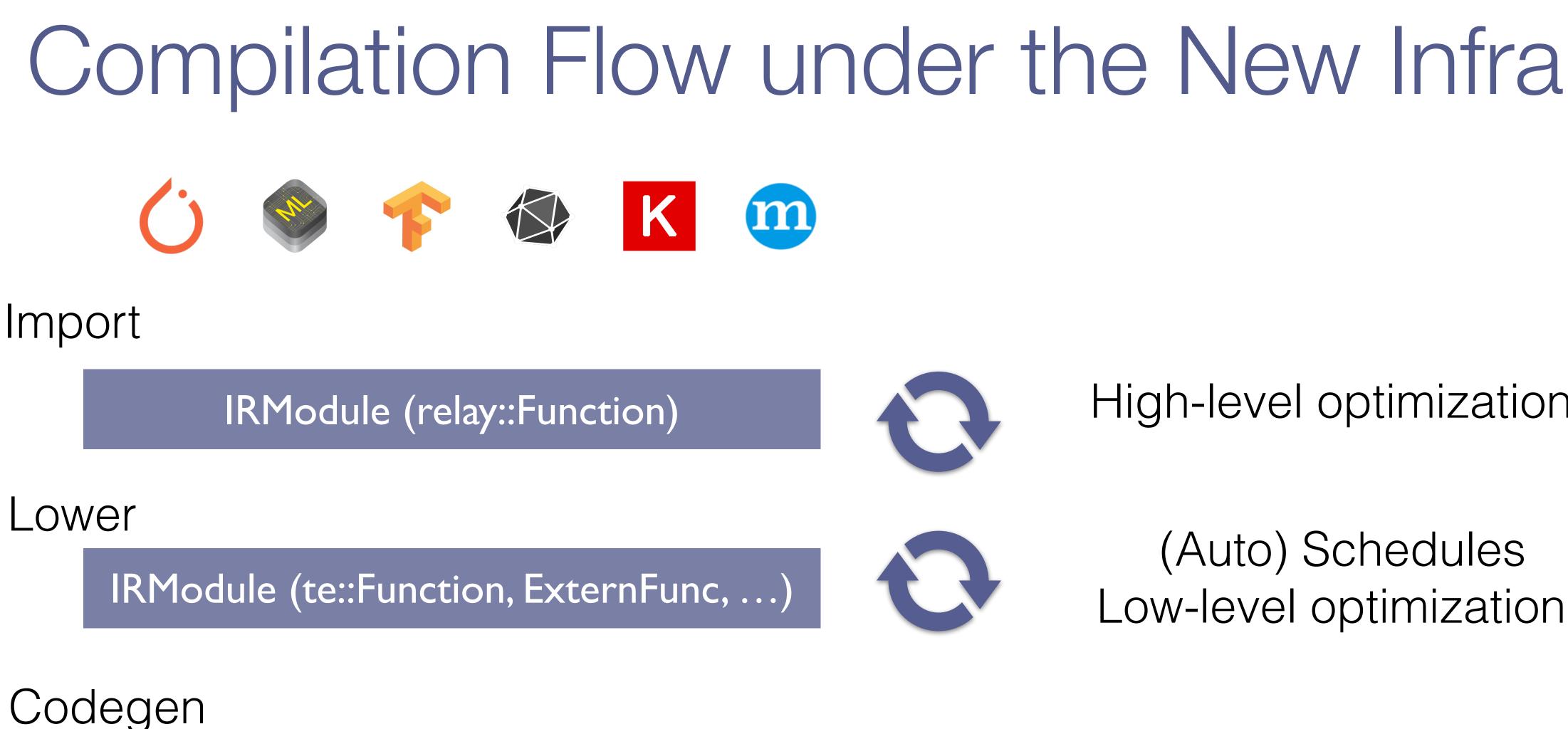
Unified IR

Full-stack Automation

Overview of New IR Infra



Unified module/pass, type system, with function variants support



runtime::Module

High-level optimizations

(Auto) Schedules Low-level optimizations

Mixed Function Variants in the Same Module

- def @relay_add_one(%x : Tensor((10,), f32)) { call_destination_passing @te_add_one(%x, out=%b) }
- def @te_add_one(%a: NDArray, %b: NDArray) { var %n %A = decl_buffer(shape=[%n], src=%a) %B = decl_buffer(shape=[%n], src=%b) for %i = 0 to 10 [data_par] { %B[%i] = %A[%i] + 1.0

mod = tvm.IRModule([te_add_one])
print(mod["te_add_one"].args)

ype="data_par"):

mod = tvm.IRModule([te_add_one])
print(mod["te_add_one"].args)

Use hybrid script as an alternative text format

ype="data_par"):

mod = tvm.IRModule([te_add_one])

Use hybrid script as an alternative text format

ype="data_par"):

Directly write pass, manipulate IR structures

mod = tvm.IRModule([te_add_one]) print(mod["te_add_one"].args)

Accelerate innovation,

Easy shift to C++ when product ready

Use hybrid script as an alternative text format

ype="data_par"):

Directly write pass, manipulate IR structures

e.g. use (GA/RL/BayesOpt/your favorite ML method) for AutoSchedule

IRModule (relay::Function)

IRModule (te::Function, ExternFunc, ...)

runtime::Module

Rethink Low-level Tensor IR

IRModule (relay::Function)

IRModule (te::Function, ExternFunc, ...)

runtime::Module

Rethink Low-level Tensor IR

IRModule (relay::Function)

IRModule (te::Function, ExternFunc, ...)

runtime::Module

Rethink Low-level Tensor IR

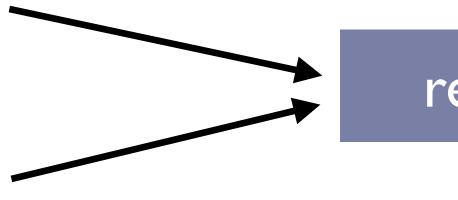
Function as unit of transformation

Schedule transformation as pass

Better tensorization support

Interpolate with Other ML Compiler Infra

TorchScript



MLIR-TF Function

IRModule

ExternFunc

Function in Other IR

te::Function

runtime::Module

ExternModule

DSOModule

relay::Function

IR Translation

Custom Packaging

Custom codegen

Where are we going: Selected Topics

Unified Runtime

Unified IR

Full-stack Automation

Full Stack Automation

High-Level Differentiable IR

Tensor Expression and Optimization Search Space

LLVM, CUDA, Metal

VTA

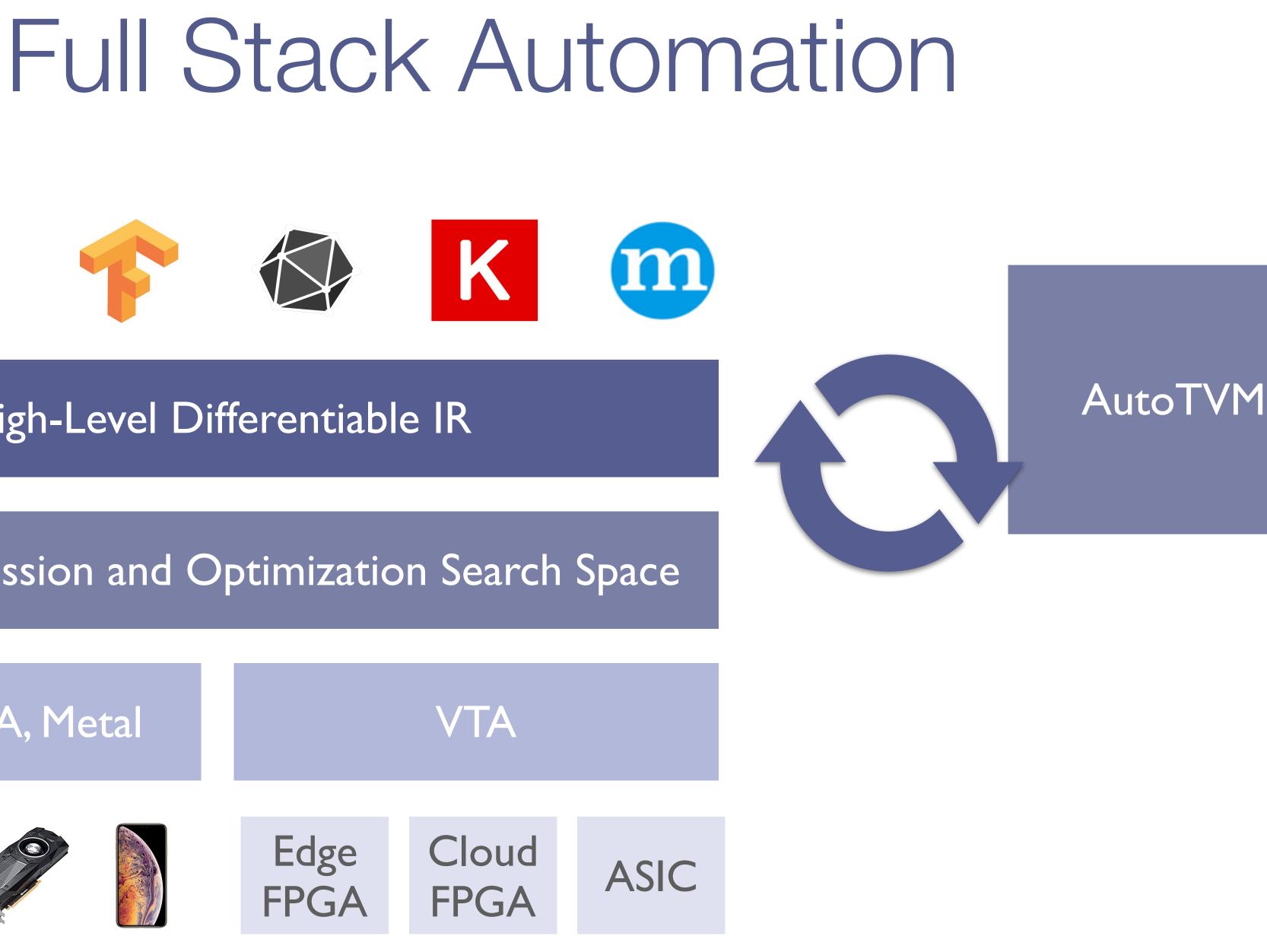
Cloud FPGA

ASIC

High-Level Differentiable IR

Tensor Expression and Optimization Search Space

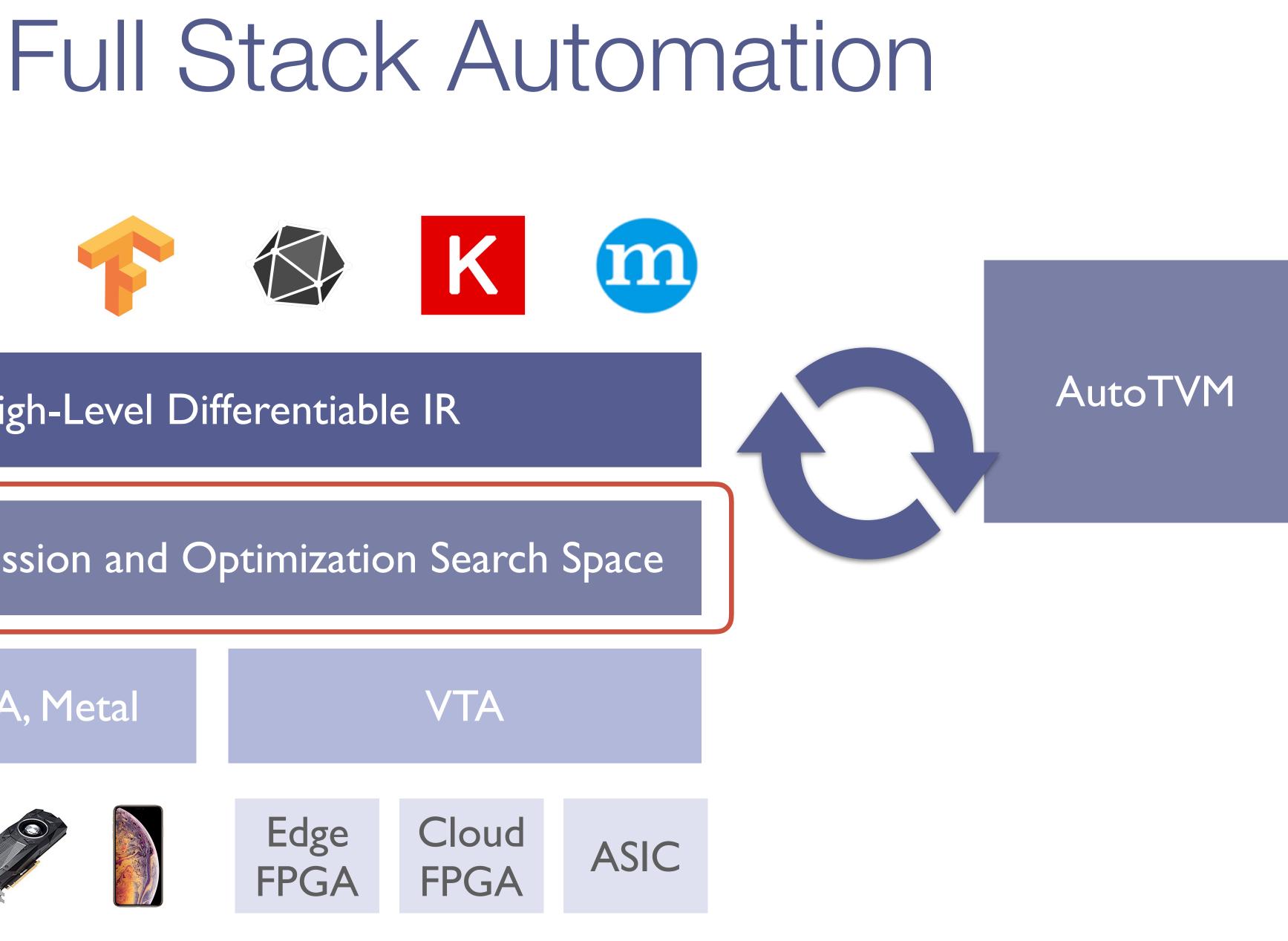
LLVM, CUDA, Metal



High-Level Differentiable IR

Tensor Expression and Optimization Search Space

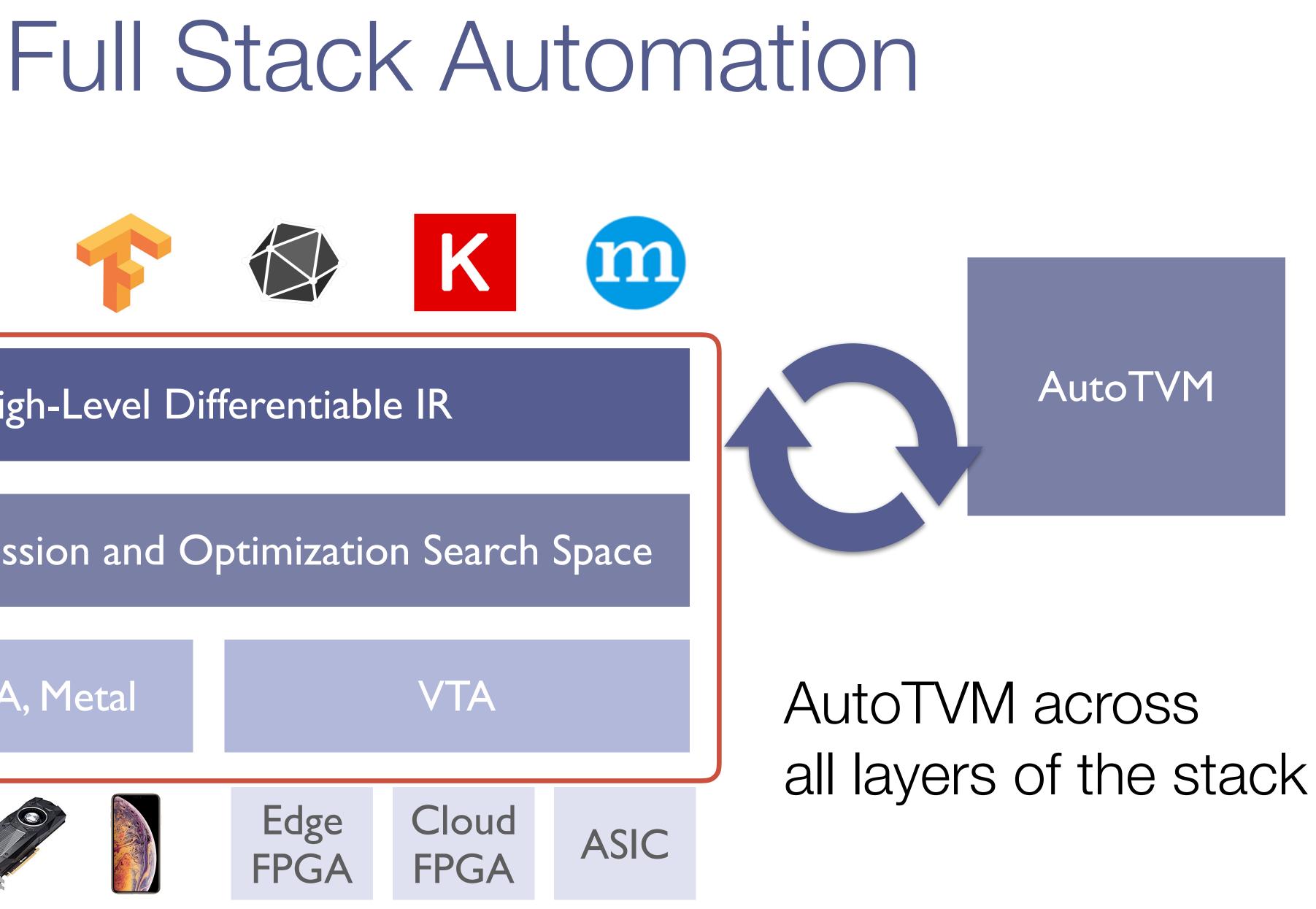
LLVM, CUDA, Metal



High-Level Differentiable IR

Tensor Expression and Optimization Search Space

LLVM, CUDA, Metal



2020 Projected Timeline: Selected Topics

Unified IR Refactoring

Unified Runtime Unified IR Runtime RFC First Version

Jan

First Release with New IR Infra

Documentation Benchmarking

Full Stack Automation

Oct

2020 Projected Timeline: Selected Topics Non comprehensive list of on-going topics

Unified IR Refactoring

Unified IR Unified Runtime Runtime RFC First Version

Jan

First Release with New IR Infra

Documentation Benchmarking

Full Stack Automation

Oct

2020 Projected Timeline: Selected Topics

Non comprehensive list of on-going topics

Ultra Low bits Gradient/Training

uTVM Standalone

Unified IR Refactoring

Unified IR Unified Runtime Runtime RFC First Version

Jan

- BERT TSIM AutoSchedule
- Dynamic Shape NPU coverage
 - First Release with New IR Infra
 - Documentation Benchmarking

Full Stack Automation

Oct

Community

Incubated as Apache TVM. Indeper allowing competitors to collaborate. Incubated as Apache TVM. Independent governance,

Incubated as Apache TVM. Independent governance, allowing competitors to collaborate.

Open Source Code Open Development Open Governance

Incubated as Apache TVM. Indeper allowing competitors to collaborate. Incubated as Apache TVM. Independent governance,

Incubated as Apache TVM. Independent governance, allowing competitors to collaborate.

Growing Developer Community 22 committers, 47 reviewers, 295 contributors

Growing Developer Community 22 committers, 47 reviewers, 295 contributors

- Incubated as Apache TVM. Independent governance, allowing competitors to collaborate.

 - ~70% growth since TVM Conf 2018

Growing Developer Community 22 committers, 47 reviewers, 295 contributors

Monthly Statistics ~50 authors, ~140 PRs, ~1000 discuss forum posts

- Incubated as Apache TVM. Independent governance, allowing competitors to collaborate.

 - ~70% growth since TVM Conf 2018

EVM.ai Sampl

Big THANKS to our sponsors!

Semiconductor Research Corporation

9:00	Keynote & Community Update TVM @ AWS, FB
11:10	Break
11:30	Compilers and VMs
12:20	Boxed lunches - Contributors Meetup
13:10	Lightning talks
13:40	Hardware TVM @ Microsoft, ARM, Xilinx
15:10	Break
15:30	Automation, new Hardware
16:50	Break
17:00	Lightning talks
18:10	Social (food, drinks)
20:00	adjourn

Keynote (SAMPL, Qualcomm, Amazon, OctoML) TVM @ AWS – Yida Wang, Amazon TVM @ FB — Andrew Tulloch and Bram Wasti, Facebook

Al Compilers at Alibaba – Yangqing Jia, Alibaba Dynamic Execution and VMs, Jared Roesch and Haichen Shen, UW and AWS

Building FPGA-Targeted Accelerators with HeteroCL – Zhiru Zhang, Cornell TVM @ Microsoft – Jon Soifer and Minjia Zhang TVM @ ARM – Ramana Radhakrishnan TVM @ Xilinx – Elliott Delaye

TVM @ OctoML – Jason Knight TVM @ Qualcomm – Krzysztof Parzyszek TASO: Optimizing Deep Learning Computation with Automated Generation of Graph Substitutions – Zhihao Jia, Stanford Talk by Nilesh Jain, Intel Labs

