

Al Compiler @ Alibaba

Presenting the work of many people !

Xiaoyong Liu

PAI (Platform of AI) Alibaba Cloud Intelligence

Al Compiler Stack

How TVM is used @ Alibaba

An End-to-End Deep Learning Compiler

- Empower Al service
- Generate high performance operators
 - subgraph & kernel
 - heterogenous computing
- An Optimizer & Compiler
 - Enable chips such as CPU, GPU, DSP & etc., potentially FPGA, AI Chips.
 - Deploy algorithm automatically
- All Scenarios
 - Cloud, Edge & IoT
 - > Training & Inference

TVM + AlService : PAI-Blade

Things We Experienced

- Current approach is too much engineering effort , difficult for platform service
- TVM is good at
 - To generate high-performance computing intensive kernels
 - · Automatic is the key
 - Heterogenous hardware friendly, if ISA is provided
 - Performance portability
 - Software Architect friendly to Auto TVM / Schedule...
 - Whole-Graph Optimization
- Challenges
 - Easy of deployment, including coverage, quality & compatibility
 - Correctness, Performance & easy of new device enabling
 - Systems don't interop
 - Maturity/Standardization ...

Contributed to TVM Community

• Automatic Tensor Core Scheduling

Nvidia tensor core in V100/T4

- Schedule Algorithm enablement, as Batch Matmul and etc. > Know what/how
- Support TFLite models
 Automatically
- C++ RPC Server
 - > Tuning your program in embedded environment without python

Ongoing Effort to Community

- Automatic Tensor Core Scheduling Enhancement
 - vthread supporting
- Operators: New Ops in Relay / TVM
 HashTable , Embedding...
- Standardize GraphRuntime Exports Into a Single DLL
 - > A way to unify runtime models exports

Product-driven TVM enhancement

- Brings online inference service
- Compiles heterogenous hardware at cloud & edge
 - > Nvidia server GPU
 - V100/T4 on FP16/INT8/INT4/INT1
 - Intel X86 Server CPU
 - on INT8/FP32/BF16
 - > ARM64 CPU
 - on INT8 / FP32
 - > ARM32 CPU

- Enhances Infrastructure
 - ➢ HIFI4 DSP
 - Hexagon DSP
 - PowerVR GPU
 - Intel GPU

Any general solution is planed to contribute back to TVM Community!

TVM produced more performance

• VS

Chip supplier's latest manually optimized high performance library
 Assembly-level optimized edge machine learning framework

Optimized to gain decent performance on various products
 > Server Nvidia GPU

Automatic TC Scheduling + tensorization + tensorcore

Edge Arm64

IoT Arm32

Performance on V100 (FP16)

M, N, K	cuBLAS TensorCore	TVM TensorCore	speedup
512, 16, 512	7.7470us	5.2570us	1.47X
512, 32, 512	8.0140us	6.0220us	1.33X
512, 64, 512	8.7530us	6.2390us	1.40X
512, 128, 512	9.0290us	7.1610us	1.26X
256, 256, 256	6.9380us	4.5930us	1.51X
1024, 32, 512	8.3320us	6.3770us	1.30X
2048, 32, 512	9.0640us	7.5070us	1.21X

Performance on T4

AliOS enhances TVM on vehicles

To accelerate NLU and AR-Nav models

• ARM64 CPU performance on INT8 / FP32

- NHWC/img2col+pack/no tensorize&co-optimized with llvm
- Planning to contribute back to community

Hexagon DSP

- vrmpy tensorize/llvm-codegen
- Could run end-to-end Mobilenet V2 INT8 model

Intel GPU

- Schedule algorithm
- Boost 1.6X performance of Lanenet model

Performance on ARM64 INT8

Performance Comparison @ rasp 3b+ AARCH64

■ TFLite 1 core ■ TFLite 4 core ■ QNNPACK 1 core ■ QNNPACK 4 core ■ TVM 1 core ■ TVM 4 core

Performance on ARM64 FP32

Performance Comparison AARCH64

AI Labs Compiles TMallGenie Models

ARM32 CPU

Overflow-Aware Quantization (INT16 = INT8 * INT8)

GEMM Tensorize

HIFI4 DSP

GEMM Tensorize, 10X speed up

PowerVR GPU

Schedule Algorithm

Performance

CPU : MTK8167S (ARM32 A35 1.5GHz) Model : MobileNetV2_1.0_224

A DL Compiler in T-HEAD SoC

- TVM has been integrated into WuJian(无剑) SoC toolchain
- Support Caffe Frontend

Tested pass alexnet / resnet 50 / mobilenet v1 / mobilenet v2 / …

TVM Roadmap @ Alibaba

- Keep contributing general effort back to community
- Auto Schedule ("with Berkeley team")
 - > Auto* is the key to build machine-learning-powered system
- Interpolate with top frameworks
- Auto heterogenous hardware placement in system level
- Infra Maturity
 - Completeness & Seamless Deployment, as quantization, model compatibility
- Workload Characterization
 - > To improve the key workloads within community

• Al Service & Operators

more chips, more models

Alibaba & OpenSource

Embrace OpenSource

Contribute OpenSource Win-Win OpenSource

Takeaways

• A golden age of deep learning compiler

- Industry-grade deep-learning compilation solution is still in evolution
- We are working to contribute to TVM
 - Development & Research

- Welcome to join us to contribute to TVM together
 - Xiaoyong Liu (xiaoyong.liu@Alibaba-inc.com)

Thank you!

