TVM at Arm

TVM Summit – Seattle

Ramana Radhakrishnan
u99127/@ramana-arm

5th December 2019
Agenda

• AI / ML in End Points
• Brief overview of Arm’s ML Platform
• Using TVM in Arm
 • Current Areas of Interest
 • Future Areas of Interest
• Challenges / Observations
What is AI Being Used for in Endpoints?

Vision
Images and video
Object detection, face unlock, defocus (bokeh), beautification, scaling, etc.

Voice
Recognition and creation
Keyword spotting, speech recognition, natural language processing, speech synthesis, etc.

Vibration
Any ‘signal’
Accelerometer, pressure, lidar/radar, speed, shock, vibration, pollution, density, viscosity, etc.

AI performs well with ‘patterns’ of data
Diversity of AI Requirements in the Market

Premium
- Best user experience and responsiveness
- Highest performance in power-efficient design

Balanced
- Superior user experience in mid-range designs
- Balance performance with area and power

Cost Sensitive
- Delivering advanced user experiences for the most cost-sensitive designs
- Optimized for performance in the smallest area
Introducing Ethos NPUs for Every Market Segment

Performance-critical AI applications delivering premium experiences

Enabling AI applications in mid-range devices balancing performance with cost and battery life constraints

Supporting AI applications in the most cost-sensitive endpoint devices
Ethos NPU Software Stack
Comprehensive ML Platform Makes Developing AI Easy

- **Ecosystem**
 - AI/ML Applications, Algorithms and Frameworks
 - TensorFlow™
 - TensorFlowLite™
 - PyTorch™
 - ONNX™
 - mxnet™
 - Caffe™
 - Caffe2™
 - Android™ NNAPI

- **Software Products**
 - Software Libraries Optimized for Arm Hardware
 - arm NN
 - arm COMPUTE LIBRARY
 - CMSIS-NN

- **Hardware Products**
 - Arm Hardware IP for AI/ML
 - CPU
 - arm CORTEX
 - arm DynamIQ
 - arm NEOVERSE
 - GPU
 - arm MALI
 - NPU
 - arm ETHOS
 - Partner IP
 - DSPs, FPGAs, Accelerators
Ethos Integration into TVM – Compile Time

- DL Framework Frontend
- NPU Graph Partitioning
- Relay Lowering
- Rest of the TVM stack
- Annotated Output
Current Areas of Work with TVM

Arm CPU and GPU

- Support for Mali Bifrost schedules.
 - Improvements by about 20-70%
 - Interested in Arm CPU architecture support
 - Investigating Arm Compute Library integration

General Areas

- Pre-quantized TensorFlow-Lite
 - Some operator support
- Framework versioning.
- Reviewing various bits of Arm architecture support.
- LLDB Pretty Printers
- Investigating μTVM

Ethos NPU

- Graph Partitioning for NPU
- Integrating support for Ethos-N77, Ethos-N57 and Ethos-N37
Future Areas of Interest

General Framework

Graph partitioning and Relay optimizations.

Improvements to code generation and generic optimizations.

Auto-tuning

Common command line utilities for using TVM.

Improvements to Continuous Integration / Testing

μTVM

Arm Architecture Support

Armv8-A architecture

• Scalable Vector Extensions (SVE/SVE2)
• Matrix Multiplication Support
• BFloat16
• Improved Advanced SIMD Support

GPU Support

• Mali Bifrost
• Mali Valhall

Cortex-M Architecture

• DSP Instructions support.
• Support for Helium / MVE.
Challenges / Opportunities

Deployment

- **Getting ready for packaging**
 - conda
 - pypi packaging
 - Integration with native packaging

- **Release process**

- **Continuous Integration**
 - Execution tests and performance monitoring.
 - Managing version updates in frameworks

Scalability

- **Developmental Practice**
 - Features vs Bug fixes.
 - Isolation of changes.

- **Developer efficiency**
 - Better explanation with changes
 - Debug helpers.
 - Understanding the test infrastructure.

- **Getting Started**
 - Make it easier!
And finally, we are hiring!
tvm-driver

- tvm-driver –help
 - compile
 - --debug-relay-all
 - --debug-tvm-all
 - --debug-all
 - --print-llvm
 - --print-assembler
 - execute
 - --native
 - --remote
 - auto-tune

Motivation

- Ease of use of TVM stack
- Common way of getting hold of outputs.