Extending TVM with Dynamic Execution

Jared Roesch and Haichen Shen
Outline

- Motivation for Dynamism
- Representing Dynamism
- Executing Dynamism
- Evaluation
Dynamic Neural Networks

- Networks are exhibiting more and more dynamism
 - Dynamic inputs: batch size, image size, sequence length, etc.
 - Control-flow, recursion, conditionals and loops (in Relay today).
 - Dynamically sized tensors
 - Output shape of some ops are data dependent: arange, nms, etc.
 - Control flow: concatenation within a while loop
- A central challenge is how do we both represent and execute these networks.
fn network(input: Tensor<(n,3,1024,1024), float32>) -> ... { ... }
\%t1: Tensor<(1), f32>
\%t2 : Tensor<(10), f32>

if (%cond) { ... } else { ... } : Tensor<(?), f32>
%start, %stop, %step : i32

arange(%start, %stop, %step) : Tensor<(?), f32>
Dynamic Neural Networks

● A central challenge is how do we both represent and execute these networks.

● We will address these two challenges at various levels of the TVM stack and share initial promising results.
Outline

- Motivation for Dynamism
- **Representing Dynamism**
- Executing Dynamism
- Evaluation
Representing dynamics in TVM

- Add Relay support for dynamic dimension (Any-dim)
- Use shape functions to compute runtime shapes.
- Supporting Any in Tensor Expression (TE) IR.
Any: typing dynamic dimension in Relay

Any: represent an unknown dimension at compilation time.
Any: typing dynamic dimension in Relay

Any: represent an unknown dimension at compilation time.

Define a tensor type: `Tensor<(*Any*, 3, 32, 32), fp32>`
Any: typing dynamic dimension in Relay

Any: represent an unknown dimension at compilation time.

Define a tensor type: Tensor<\((\text{Any}, 3, 32, 32)\), fp32>

Define type relation:

arange: fn(start:fp32, stop:fp32, step:fp32)
-> Tensor<\((\text{Any})\), fp32>

broadcast: fn(Tensor<\((\text{Any}, \text{Any})\), fp32>, Tensor<\((1, 8)\), fp32>)
-> Tensor<\((\text{Any}, 8)\), fp32>

Valid only when Any = 1 or 8
How to compute and check shape dynamically?

Challenges
● Static type checking cannot eliminate all errors
● Type checking system too heavy weight for runtime
How to compute and check shape dynamically?

Challenges
- Static type checking cannot eliminate all errors
- Type checking system too heavy weight for runtime

Approach
- Instrument shape computing functions into the program
Instrumentation example

def @main(%x: Tensor[(?, ?), float32], %y: Tensor[(1, 2), float32]) -> Tensor[(?, 2), float32] {
 add(%x, %y) /* ty=Tensor[(?, 2), float32] */
}

def @main(%x: Tensor[(?, ?), float32], %y: Tensor[(1, 2), float32]) -> Tensor[(?, 2), float32] {
 %0 = shape_of(%x, dtype="int64")
 %1 = meta[relay.Constant][0] /* y.shape: [1, 2] */
 %2 = broadcast_shape_func(%0, %1)
 %tensor = alloc_tensor(%2, float32)
 add(%x, %y, %tensor)
}
Shape function

- Register a shape function to each operator to check the type and compute the output shape
Shape function

- Register a shape function to each operator to check the type and compute the output shape
- Shape function has two modes
 \((\text{op_attrs}, \text{input_tensors}, \text{out_ndims}) \rightarrow \text{out_shape_tensors})\)
 - Data independent
 \((\text{op_attrs}, \text{input_shapes}, \text{out_ndims}) \rightarrow \text{out_shape_tensors})\)
 - Data dependent
 \((\text{op_attrs}, \text{input_data}, \text{out_ndims}) \rightarrow \text{out_shape_tensors})\)
Shape function for fused ops

\[\exp x + (5, ?) \]

\[(1,) \]

\[(?, ?) \]

Fused op

Fused shape function
Shape function for fused ops

Invalid op fusion

Fused op

Fused shape function
Shape function example

@script
def _concatenate_shape_func(inputs, axis):
 ndim = inputs[0].shape[0]
 out = output_tensor((ndim,), "int64")
 for i in const_range(ndim):
 if i != axis:
 out[i] = inputs[0][i]
 for j in const_range(1, len(inputs)):
 assert out[i] == inputs[j][i], "Dims mismatch in the inputs of concatenate."
 else:
 out[i] = int64(0)
 for j in const_range(len(inputs)):
 out[i] += inputs[j][i]
 return out

@reg.register_shape_func("concatenate", False)
def concatenate_shape_func(attrs, input_shapes, _):
 axis = get_const_int(attrs.axis)
 return [_concatenate_shape_func(inputs, convert(axis))]

Use hybrid script to write shape function

Type checking

Data independent

Input shape tensors
Shape function example

@script
def _arange_shape_func(start, stop, step):
 out = output_tensor((1,), "int64")
 out[0] = int64(ceil_div((int64(stop[0]) - int64(start[0])), int64(step[0]))))
 return out

@_reg.register_shape_func("arange", True) # Data dependent
def arange_shape_func(attrs, input_data, _):
 return [_arange_shape_func(*input_data)]
Outline

- Motivation for Dynamism
- Representing Dynamism
- **Executing Dynamism**
- Evaluation
Executing dynamics in TVM

- By extending the IR we now can represent dynamic programs but *how do we execute them?*
- To handle flexibly executing dynamic programs we introduce the Relay virtual machine.
- We must also generate code which handles dynamic shapes in kernels *(work-in-progress)*:
 - Kernel dispatch for a single op
 - Dispatch for a (sub-)expression
Previous approach: Graph Runtime

- Existing executors are based on a graph traversal style execution.
- Set up a graph of operators and push data along every edge, compute the operation, and flow forward until finished.
- Simple design enables simple memory allocation, and executor.
- Design is complicated by control, and dynamic shapes.
Enter the virtual machine

- Instead we take inspiration from full programming languages and design a VM.
- The VM has special considerations
 - Primitives are tensors, and instructions operate on tensors (CISC-style, no-scalar instructions)
 - Instructions normally built in (+, -, etc.) are realized by code generated via TVM.
 - Control handled in standard way in VM.
 - In contrast to AoT compilation, VM is flexible
 - graph dispatch and bucketing can be easily implemented.
Relay virtual machine

Relay Executable

Relay VM Executor

Relay Object (hardware independent)
- Code segment
 - VM Func 0
 - VM Func 1
 - ...
 - VM Func N
- Data segment
 - Const 0
 - Const 1
 - ...
 - Const K

Kernel lib (hardware dependent)
- Packed Func 0
- Packed Func 1
- ...
- Packed Func M

```
exe = relay.vm.compile(mod, target)
vm = relay.vm.VirtualMachine(exe)
vm.init(ctx)
vm.invoke("main", *args)
```
VM bytecode

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move</td>
<td>Moves data from one register to another.</td>
</tr>
<tr>
<td>Ret</td>
<td>Returns the object in register result to caller’s register.</td>
</tr>
<tr>
<td>Invoke</td>
<td>Invokes a function at in index.</td>
</tr>
<tr>
<td>InvokeClosure</td>
<td>Invokes a Relay closure.</td>
</tr>
<tr>
<td>InvokePacked</td>
<td>Invokes a TVM compiled kernel.</td>
</tr>
<tr>
<td>AllocStorage</td>
<td>Allocates a storage block.</td>
</tr>
<tr>
<td>AllocTensor</td>
<td>Allocates a tensor value of a certain shape.</td>
</tr>
<tr>
<td>AllocTensorReg</td>
<td>Allocates a tensor based on a register.</td>
</tr>
<tr>
<td>AllocDatatype</td>
<td>Allocates a data type using the entries from a register.</td>
</tr>
<tr>
<td>AllocClosure</td>
<td>Allocates a closure with a lowered virtual machine function.</td>
</tr>
<tr>
<td>If</td>
<td>Jumps to the true or false offset depending on the condition.</td>
</tr>
<tr>
<td>Goto</td>
<td>Unconditionally jumps to an offset.</td>
</tr>
<tr>
<td>LoadConst</td>
<td>Loads a constant at an index from the constant pool.</td>
</tr>
</tbody>
</table>
Relay virtual machine

def @main(%i: int32) -> int32 {
 @sum_up(%i) /* ty=int32 */
}

def @sum_up(%i1: int32) -> int32 {
 %0 = equal(%i1, 0) /* ty=int32 */ /* ty=bool */
 if (%0) {
 %i1
 } else {
 %1 = subtract(%i1, 1) /* ty=int32 */ /* ty=int32 */
 %2 = @sum_up(%1) /* ty=int32 */
 add(%2, %i1) /* ty=int32 */
 }
}

sum_up:
alloc_storage 1 1 64 bool
alloc_tensor $2 $1 [] uint1
invoke_packed PackedFunc[0] (in: $0, out: $2)
load_consti $3 1
if $2 $3 1 2
goto 9
alloc_storage 4 4 64 int32
alloc_tensor $5 $4 [] int32
invoke_packed PackedFunc[1] (in: $0, out: $5)
invoke $6 VMFunc[0]($5)
alloc_storage 7 4 64 int32
alloc_tensor $8 $7 [] int32
invoke_packed PackedFunc[2] (in: $6, $0, out: $8)
move $0 $8
ret $0

main:
invoke $1 VMFunc[0]($0)
ret $1
Generating code for dynamic shapes

● We now must solve the final problem of generating kernels that provide compelling performance for non-static shapes.
● The VM provides a framework for experimenting with different strategies, we will discuss in progress approaches:
 ○ Dynamic operator dispatch (WIP)
 ○ Graph Dispatch (https://github.com/apache/incubator-tvm/pull/4241)
● We believe there exists lots of future work in this area.
Outline

● Motivation for Dynamism
● Representing Dynamism
● Executing Dynamism
● Evaluation
Latency compared to graph runtime

![Graph showing latency comparison for ResNet, MobileNet, VGG, and SqueezeNet across Intel CPU, ARM CPU, and Nvidia GPU.]
Memory usage compared to graph runtime

![Graph showing relative memory usage for various models with and without memory planning](image)
Dynamic model performance

<table>
<thead>
<tr>
<th>Unit: us/token</th>
<th>Intel CPU</th>
<th>ARM CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay VM</td>
<td>38.7</td>
<td>186.5</td>
</tr>
<tr>
<td>MXNet (1.6)</td>
<td>221.4</td>
<td>3681.4</td>
</tr>
<tr>
<td>Tensorflow (1.14)</td>
<td>247.5</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit: us/token</th>
<th>Intel CPU</th>
<th>ARM CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay VM</td>
<td>40.3</td>
<td>86.3</td>
</tr>
<tr>
<td>PyTorch (1.3)</td>
<td>701.6</td>
<td>1717.1</td>
</tr>
<tr>
<td>TF Fold</td>
<td>209.9</td>
<td>-</td>
</tr>
</tbody>
</table>

LSTM model

Tree-LSTM model
BERT model performance

<table>
<thead>
<tr>
<th>Unit: us/token</th>
<th>Intel CPU</th>
<th>ARM CPU</th>
<th>Nvidia GPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay VM</td>
<td>501.3</td>
<td>3275.9</td>
<td>79.4</td>
</tr>
<tr>
<td>MXNet (1.6)</td>
<td>487.1</td>
<td>8654.7</td>
<td>113.2</td>
</tr>
<tr>
<td>Tensorflow (1.14)</td>
<td>747.3</td>
<td>-</td>
<td>118.4</td>
</tr>
</tbody>
</table>
Conclusions

● We have extended Relay/TVM with support for dynamic shapes.
● To support increased expressivity of Relay we have built a new execution mechanism the VM.
● We have begun exploring strategies for generating efficient kernels that support dynamic shapes with promising results.
● We believe the VM infrastructure can serve as a foundation for exploring future research into dynamic execution and code generation.
Thank you!
Acknowledgement
Outline

- Dynamic motivations
 - NLP, NMS, control, data structures
 - Integration with external code and runtimes
- Existing solution: graph runtime
 - Challenges with graph runtime
- Enter VM
 - Designed to be scaffold to build new dynamic functionality consisting of compiler and runtime improvements
- VM design
- Extensions
- Results
- Future Work
 - Dispatch, strategies?
Existing solution: graph runtime

Challenges:

●
• Control flow (if, loop, etc)
• Dynamic shapes
 ○ Dynamic inputs: batch size, image size, sequence length, etc.
 ○ Output shape of some ops are data dependent: arange, nms, etc.
 ○ Control flow: concatenate within a while loop

Limitation of TVM/graph runtime
• Cannot compile and run dynamic models
Backup
Dynamic codegen: op dispatch (proposal)

- Goal: support codegen for dynamic shape
- Challenges
 - Single kernel performs poor across different shapes
 - Different templates for the same op
 - TVM compute and schedule are coupled together
Dynamic codegen: kernel dispatch (proposal)

Relay op: conv2d

A generic function

FTVMStrategy

"cpu"

"gpu"

Default function

CPU strategy func

GPU strategy func

OpStrategy

OpStrategy

OpStrategy

Default implement

b < 8

Specialized implement 1

Specialized implement 2 (e.g., winograd)

kernel_size <= 3
Data structure

class SpecializedConditionNode : public Node {
 Array<Expr> conditions;
};

class OpImplementNode : public relay::ExprNode {
 FTVMCompute fcompute;
 FTVMSchedule fschedule;
 SpecializedCondition condition; // optional
};

class OpStrategyNode : public relay::ExprNode {
 OpImplement default_implement;
 Array<OpImplement> specialized_implements;
};

class OpStrategy : public relay::Expr {
 void RegisterDefaultImplement(FTVMCompute fcompute, FTVMSchedule fschedule, bool allow_override=false);
 void RegisterSpecializedImplement(FTVMCompute fcompute, FTVMSchedule fschedule, SpecializedCondition condition);
};
@conv2d_strategy.register("cpu")

def conv2d_strategy_cpu(attrs, inputs, out_type, target):
 strategy = OpStrategy()
 layout = attrs.data_layout
 if layout == "NCHW":
 oc, ic, kh, kw = inputs[1].shape
 strategy.register_specialized_implement(wrap_compute_conv2d(topi.x86.conv2d_winograd),
 topi.x86.conv2d_winograd,
 [kh <= 3, kw <= 3])
 strategy.register_default_implement(wrap_compute_conv2d(topi.x86.conv2d_nchw),
 topi.x86.schedule_conv2d_nchw)
 elif layout == "NHWC":
 strategy.register_default_implement(wrap_compute_conv2d(topi.nn.conv2d_nhwc),
 topi.x86.schedule_conv2d_nhwc)
 elif layout == "NCHWc":
 strategy.register_default_implement(wrap_compute_conv2d(topi.nn.conv2d_nchw),
 topi.x86.schedule_conv2d_nchw)
 else: ...
 return strategy
CodeGen for OpStrategy

- Each implementation defined will be compiled into a kernel in the module
- Dispatch logic will be compiled into another kernel as well

```python
# pseudocode for dispatch kernel
def dispatch_kernel(*args):
    if specialized_condition1:
        specialized_kernel1(*args)
    elif specialized_condition2:
        specialized_kernel2(*args)
    ...
    else:
        default_kernel(*args)  # corresponding to default implement
```
Dispatch a Whole Graph

Data -> (Any, 3, 224, 224)

Dispatch Tree

1 <= bs < 17
Resnet_copy0

17 <= bs < 33
Resnet_copy1

...
Why do we need graph dispatcher

1. Minimal overhead: only one dispatching operation is required for each inference.

2. Fit for operator such as conv2d_NCHWc. Graph tuning is well defined for each subgraph.

3. Avoid runtime layout tracking system for operator requires layout transformation to optimize.
Dispatching Function

Data_0: (Any, 3, 56, 56)

Index 0

Data_1: (1, 3, Any, Any)

Index 2

Index 3
```python
input_name = "data"
input_shape = [tvm.relay.Any(), 3, 224, 224]
dtype = "float32"
block = get_model('resnet50_v1', pretrained=True)
mod, params = relay.frontend.from_mxnet(block, shape={input_name: input_shape}, dtype=dtype)

vmc = relay.backend.vm.VMCompiler()

with tvm.autotvm.apply_graph_best("resnet50_v1_graph_opt.log"):
    vm = vmc.compile(mod, "llvm")

vm.init(ctx)
vm.load_params(params)

data = np.random.uniform(size=(1, 3, 224, 224)).astype("float32")
out = vm.run(data)

data = np.random.uniform(size=(4, 3, 224, 224)).astype("float32")
out = vm.run(data)
```