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Question: is this a legal schedule?

A = tvm.placeholder((M, N), name='A")

B = tvm.compute((M, N), lambda bi, bj : A[bi, bj] + 1, name='B")
C = tvm.compute((M, N), lambda ci, cj : B[ci, cj] * 3, name='C")
s = tvm.create_schedule(C.op)

# step 1

s[B].compute_at(s[C], s[C].op.axis[@])

# step 2
BL = s.cache read(B, "local", readers=[C])

print(tvm.lower(s, [A, B], simple _mode=True))




Illegal, but why?

A = tvm.placeholder((M, N), name='A")
tvm.compute((M, N), lambda bi, bj : A[bi, bj] + 1, name='B")
tvm.compute((M, N), lambda ci, cj : B[ci, cj] * 3, name='C")
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s = tvm.create_schedule(C.op)

# step 1
s[B].compute_at(s[C], s[C].op.axis[@])

# step 2
BL = s.cache read(B, "local", readers=[C])

print(tvm.lower(s, [A, B], simple _mode=True))

TVMError: Check failed:
found_attach || stage_attach.size()
== 0: Invalid Schedule, cannot find
the producer compute(B,
0x2851e60) along the loop nest
specified by compute_at of
consumer compute(B.local,
0x2b83b00)




Show the Schedule Tree

A = tvm.placeholder((M, N), name='A")
B = tvm.compute((M, N), lambda bi, bj
C = tvm.compute((M, N), lambda ci, cj
s = tvm.create _schedule(C.op)

# step 1

s[B].compute at(s[C], s[C].op.axis[0])
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Violation of Legality

A = tvm.placeholder((M, N), name='A")
B = tvm.compute((M, N), lambda bi, bj : A[bi, bj] + 1, name='B")

C = tvm.compute((M, N), lambda ci, cj : B[ci, cj] * 3, name='C")
s = tvm.create _schedule(C.op)
# step 1

s[B].compute at(s[C], s[C].op.axis[0])

# step 2
BL = s.cache_read(B, "local", readers=[C])
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A Possible Fix

A = tvm.placeholder((M, N), name='A") =N
B = tvm.compute((M, N), lambda bi, bj : A[bi, bj] + 1, name='B") A ____< B BL c
C = tvm.compute((M, N), lambda ci, cj : B[ci, cj] * 3, name='C") A
s = tvm.create _schedule(C.op)
ROOT
# step 1
s[B].compute at(s[C], s[C].op.axis[0])
A(R C
# step 2 0 ci
BL = s.cache_read(B, "local", readers=[C]) A ] o
# step 3 (The above schedule is illegal. This step makes it legal) ' [(B-local(ci, ¢))*3D)]
s|BL]|.compute_at(s|C s[C].op.axis[©
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Motivations

Describe schedule primitives and transformations in a more elaborate way
Provide guidance to new TE users

Help debugging tricky TE programs

Provide a framework to discuss bugs (is this a bug or feature?)

Ensure conherent development of new features



Tensor Expression

The Operational Model

tvm.placeholder((m,n))
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s = tvm.create_schedule(C.op)
io, jo = s[C].op.axis
jlo, jli = s[C].split(je, 2)
s[C].reorder(jli, jlo)

tvm.compute((m, n), lambda i, j: A[i,j] + 1)
tvm.compute((m, n), lambda i, j: B[i,j] * 2)
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The Document

An operational model of schedule primitives in Tensor Expression

W Development W RFC

YuanLin 1h

Hi there,

Yongfeng Gu ( @maplegu ) and | are working on an operational model of the schedule primitives in
Tensor Expression. This document aims to make it easier to understand

« the interactions between different schedule primitives,
« the impact of the schedule primitives on the final code generation.

The model is inspired by Chapter 7 of Jonathan Ragan-Kelley's PhD thesis and an early version of the
TVM paper.

The very initial draft (rev 0.1) is available here 1 . We welcome you all to comment on it, correct it,
answer open questions, or help improve it in any form you like.

The document is currently in Google doc. Please let us know if there is a better way to collaborate on
the working document.

We hope it can be included as part of the TVM Design and Developer Guide document when ready.

We will also give a lightning talk about this at the coming TVM conference. Come and ask us questions
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Example pages

rfactor

“rfactor(tensor, axis, factor_axis=0)" inserts a refactor stage before the given (original) reduction
stage for tensor. It copies over all the IterVars from the reduction stage, changes the reduction
IterVar axis specified in the “rfactor’ to a regular IterVar, and makes it at the position factor_axis
(which is the outermost one by default). In the original reduction stage, all related reduction
IterVars are removed except for axis. The refactor stage computes the partial reduction results,
which are further reduced by the updated reduction stage.

Debug ‘cache_read’ will create new readers. Notice the address of reader B is changed
Hints after cache_read. You need to refer to the new compute as s[B].op instead of B.op
after the cache read.

k = tvm.reduce_axis((@, m), "k")
B = tvm.compute((n,), lambda i: tvm.sum(A[i, k], axis=k), name="B")

ko, ki = s[B].split(B.op.reduce_axis[@], factor=16)
BF = s.rfactor(B, ki)

BF = s.rfactor(B, ki)
—

Stage B Stage B.rl Stage B
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[Example 5]

The following illustrates an example where the use of ‘compute_at’ and ‘cache_read’ can result
in an illegal schedule. Step 1 attaches B to C with compute_at. The Schedule Tree is legal as
shown on the left in the figure below. In step 2, cache_read inserts a stage BL between B and
C in the Dataflow Graph and adds a branch for BL under root in the Schedule Tree as shown in
the middle. Although BL depends on B, LCA(BL, C) is above LCA(B, C), making the Schedule
Tree illegal as explained in the compute_at section. Finally, step 3 moves the BL branch to thel
same point the B branch attaching to the C branch to turn the Schedule Tree legal again.

A = tvm.placeholder((M, N), name='A")
B = tvm.compute((M, N), lambda bi, bj : A[bi, bj] + 1, name='B")
C = tvm.compute((M, N), lambda ci, cj : B[ci, cj] * 3, name='C")

s = tvm.create_schedule(C.op)

# step 1
s[B].compute_at(s[C], s[C].op.axis[@])

# step 2
BL = s.cache read(B, "local", readers=[C])

# step 3 (The above schedule is illegal. This step makes it legal).
s[BL].compute_at(s[C], s[C].op.axis[@])




Help Needed!

We would like to contribute the document to the TVM community.
We are also working on a visualization tool, Tensor Expression Debug Display (TEDD).

Questions/Survey:
Is this model helpful?
Is this or similar model well understood?
Will you use it for future discussion?

Let's work together to
improve the model
complete the document



Thank you



