
JANUS: Fast and Flexible Deep Learning
via Symbolic Graph Execution of Imperative Programs

Eunji Jeong, Sungwoo Cho, Gyeong-In Yu,
Joo Seong Jeong, Dong-Jin Shin, Byung-Gon Chun

1Demo

2

Introduction Challenge Solution Results

Images From:
http://www.mdpi.com/
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
Going Deeper with Convolutions, 2014, https://towardsdatascience.com/learn-how-recurrent-neural-networks-work-84e975feaaf7
Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation, Energies 2017
https://skymind.ai/wiki/generative-adversarial-network-gan
https://en.wikipedia.org/wiki/Reinforcement_learning
https://medium.com/@Petuum/intro-to-dynamic-neural-networks-and-dynet-67694b18cb23

Deep Neural Networks

Images From:
http://www.mdpi.com/
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
Going Deeper with Convolutions, 2014, https://towardsdatascience.com/learn-how-recurrent-neural-networks-work-84e975feaaf7
Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation, Energies 2017
https://skymind.ai/wiki/generative-adversarial-network-gan
https://en.wikipedia.org/wiki/Reinforcement_learning
https://medium.com/@Petuum/intro-to-dynamic-neural-networks-and-dynet-67694b18cb23

3

Introduction Challenge Solution Results

Deep Learning (DL) Frameworks

Deep Neural Networks

4

2.0

Introduction Challenge Solution Results

1.x

Images From:
http://www.mdpi.com/
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
Going Deeper with Convolutions, 2014, https://towardsdatascience.com/learn-how-recurrent-neural-networks-work-84e975feaaf7
Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation, Energies 2017
https://skymind.ai/wiki/generative-adversarial-network-gan
https://en.wikipedia.org/wiki/Reinforcement_learning
https://medium.com/@Petuum/intro-to-dynamic-neural-networks-and-dynet-67694b18cb23

Symbolic DL Frameworks Imperative DL Frameworks

Deep Neural Networks

Symbolic DL Frameworks

✓ Build a Symbolic Graph
✓ Execute the Graph

def build_graph(g):
 x = g.placeholder(float)
 linear = g.add(g.mul(W, x), b)

build_graph(graph)
run_graph(graph, x_data)

Imperative DL Frameworks

✓ Directly Execute the Computations

x

Mul

Add

W

b

5

def linear(x):
 return W * x + b
linear(x_data)

2.01.x

Introduction Challenge Solution Results

Symbolic DL Frameworks

+ Easy to Optimize
+ Compiler Optimization
+ Parallel Execution of Operations
+ Deploy on GPU, Cluster, Mobile,...

- Decoupled View:
Hard to Program & Debug

Imperative DL Frameworks

+ Direct Execution:
Easy to Program & Debug

- Hard to Optimize

 Pros

 Cons

6

Introduction Challenge Solution Results

JANUS: Combining the Best of Both Worlds

7

Imperative DL Program

def foo(x):
 tmp = mul(3, x)
 return add(tmp, 2)

Transparent
Conversion

Symbolic DL Graph

x

Mul

Add

3

2

“Easy Programmability” “High Performance”

Introduction Challenge Solution Results

8

Introduction Challenge Solution Results

Imperative DL Program
with Dynamic Features

for item in sequence:
 state = Cell(state, item)
 outputs += [state] Symbolic DL Graph

?
● Dynamic Control Flow
● Dynamic Types
● Impure Functions
● ...

9

Introduction Challenge Solution Results

Symbolic DL Graph

state

CellSwitch

Merge
i<N

Next ● Correct
● Slow

?
Imperative DL Program
with Dynamic Features

for item in sequence:
 state = Cell(state, item)
 outputs += [state]

Symbolic DL Graph
10

Introduction Challenge Solution Results

Symbolic DL Graph

state

CellSwitch

Merge
i<N

Next ● Correct
● Slow

● Fast
● Incorrect

Cell

state

Cell

Cell

?
Imperative DL Program
with Dynamic Features

for item in sequence:
 state = Cell(state, item)
 outputs += [state]

 Solution: Speculative Graph Generation and Execution

● [Performance] Speculatively Specialize the Graph
○ Make reasonable assumptions based on the execution history (Profiling)
○ Run specialized graph (Common Case)

● [Correctness] Validate Assumptions
○ Fallback if an assumption is broken (Rare Case)

11

Introduction Challenge Solution Results

Imperative DL Program

for item in sequence:
 state = rnn(state, item)
 outputs += [state]

 Imperative Executor

Pre-defined DL Operations .Python Interpreter .

 Overall Workflow on JANUS

12

Introduction Challenge Solution Results

Imperative DL Program

for item in sequence:
 state = rnn(state, item)
 outputs += [state]

 Imperative Executor

Pre-defined DL Operations .Python Interpreter .

Profiler

len:3

13

 Overall Workflow on JANUSIntroduction Challenge Solution Results

 Symbolic Graph Executor

Imperative DL Program

for item in sequence:
 state = rnn(state, item)
 outputs += [state]

Symbolic DL Graph

Pre-defined DL Operations .Python Interpreter .

14

 Overall Workflow on JANUS

Cell

state

Cell

Cell

len == 3
?

Assert

Graph
Generator

len:3

Introduction Challenge Solution Results

Cell

state

Cell

Cell

len == 3
?

Assert

 Symbolic Graph Executor

Imperative DL Program

for item in sequence:
 state = rnn(state, item)
 outputs += [state]

Symbolic DL Graph

Pre-defined DL Operations .Python Interpreter .

15

 Overall Workflow on JANUS

Assumption
Failure

len:3

Introduction Challenge Solution Results

 Symbolic Graph Executor

Cell

state

Cell

Cell

len == 3
?

Assert

Imperative DL Program

for item in sequence:
 state = rnn(state, item)
 outputs += [state]

Symbolic DL Graph

Pre-defined DL Operations .Python Interpreter .

16

 Overall Workflow on JANUS

len:3

Introduction Challenge Solution Results

 Imperative Executor

Imperative DL Program

for item in sequence:
 state = rnn(state, item)
 outputs += [state]

Pre-defined DL Operations .Python Interpreter .

Profiler

17

 Overall Workflow on JANUS

len:?

Introduction Challenge Solution Results

 Symbolic Graph Executor

Imperative DL Program

for item in sequence:
 state = rnn(state, item)
 outputs += [state]

Symbolic DL Graph

Pre-defined DL Operations .Python Interpreter .

Graph
Generator

18

 Overall Workflow on JANUS

state

CellSwitch

Merge

i<N

Next

len:?

Introduction Challenge Solution Results

ImageNet Test Error with ResNet50

19

ImperativeSymbolic

Time

JANUS

36 GPUs

 3.4x Faster Convergence

Introduction Challenge Solution Results

CNN

GAN

DRL

TreeNN

RNN

Normalized Training Throughput

20

LeNet
ResNet-50

Inception-v3
LSTM

LM
TreeRNN

TreeLSTM
A3C
PPO

AN
PIX2PIX

Single Machine

Imp.

Symbolic

47.6x over
Imperative

96.0% of
Symbolic

Imperative JANUS

Introduction Challenge Solution Results

Thank You!

21

