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Deep Neural Networks



4

2.0

Introduction Challenge Solution Results

1.x

Images From:
http://www.mdpi.com/
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
Going Deeper with Convolutions, 2014, https://towardsdatascience.com/learn-how-recurrent-neural-networks-work-84e975feaaf7
Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation, Energies 2017
https://skymind.ai/wiki/generative-adversarial-network-gan
https://en.wikipedia.org/wiki/Reinforcement_learning
https://medium.com/@Petuum/intro-to-dynamic-neural-networks-and-dynet-67694b18cb23

Symbolic DL Frameworks Imperative DL Frameworks

Deep Neural Networks



Symbolic DL Frameworks

✓ Build a Symbolic Graph
✓ Execute the Graph

def build_graph(g):
  x = g.placeholder(float)
  linear = g.add(g.mul(W, x), b)

build_graph(graph)
run_graph(graph, x_data)

Imperative DL Frameworks

✓ Directly Execute the Computations
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def linear(x):
  return W * x + b
linear(x_data)

2.01.x
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Symbolic DL Frameworks

+ Easy to Optimize
+ Compiler Optimization
+ Parallel Execution of Operations
+ Deploy on GPU, Cluster, Mobile,...

- Decoupled View:
Hard to Program & Debug

Imperative DL Frameworks

+ Direct Execution:
Easy to Program & Debug

- Hard to Optimize

 Pros

 Cons
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JANUS: Combining the Best of Both Worlds
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Imperative DL Program

def foo(x):
  tmp = mul(3, x)
  return add(tmp, 2)

Transparent
Conversion

Symbolic DL Graph

x

Mul

Add
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2

“Easy Programmability” “High Performance”
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Imperative DL Program
with Dynamic Features

for item in sequence:
  state = Cell(state, item)
  outputs += [state] Symbolic DL Graph

?
● Dynamic Control Flow
● Dynamic Types
● Impure Functions
● ...



9

Introduction Challenge Solution Results

Symbolic DL Graph

state

CellSwitch

Merge
i<N

Next ● Correct
● Slow

?
Imperative DL Program
with Dynamic Features

for item in sequence:
  state = Cell(state, item)
  outputs += [state]



Symbolic DL Graph
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Symbolic DL Graph

state

CellSwitch

Merge
i<N

Next ● Correct
● Slow

● Fast
● Incorrect

Cell

state

Cell

Cell

?
Imperative DL Program
with Dynamic Features

for item in sequence:
  state = Cell(state, item)
  outputs += [state]



 

   Solution: Speculative Graph Generation and Execution 

● [Performance] Speculatively Specialize the Graph
○ Make reasonable assumptions based on the execution history (Profiling)
○ Run specialized graph (Common Case)

● [Correctness] Validate Assumptions
○ Fallback if an assumption is broken (Rare Case)
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Imperative DL Program

for item in sequence:
  state = rnn(state, item)
  outputs += [state]

   Imperative Executor

Pre-defined DL Operations         .Python Interpreter        .

 Overall Workflow on JANUS
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Imperative DL Program

for item in sequence:
  state = rnn(state, item)
  outputs += [state]

   Imperative Executor

Pre-defined DL Operations         .Python Interpreter        .

Profiler

len:3
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   Symbolic Graph Executor

Imperative DL Program

for item in sequence:
  state = rnn(state, item)
  outputs += [state]

Symbolic DL Graph

Pre-defined DL Operations         .Python Interpreter        .
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 Overall Workflow on JANUS
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len == 3
?

Assert

Graph
Generator

len:3
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Cell

state

Cell

Cell

len == 3
?

Assert

   Symbolic Graph Executor

Imperative DL Program

for item in sequence:
  state = rnn(state, item)
  outputs += [state]

Symbolic DL Graph

Pre-defined DL Operations         .Python Interpreter        .
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 Overall Workflow on JANUS

Assumption
Failure

len:3
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   Symbolic Graph Executor

Cell

state

Cell

Cell

len == 3
?

Assert

Imperative DL Program

for item in sequence:
  state = rnn(state, item)
  outputs += [state]

Symbolic DL Graph

Pre-defined DL Operations         .Python Interpreter        .
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 Overall Workflow on JANUS

len:3
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   Imperative Executor

Imperative DL Program

for item in sequence:
  state = rnn(state, item)
  outputs += [state]

Pre-defined DL Operations         .Python Interpreter        .

Profiler
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 Overall Workflow on JANUS

len:?
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   Symbolic Graph Executor

Imperative DL Program

for item in sequence:
  state = rnn(state, item)
  outputs += [state]

Symbolic DL Graph

Pre-defined DL Operations         .Python Interpreter        .

Graph
Generator
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 Overall Workflow on JANUS
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ImageNet Test Error with ResNet50
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ImperativeSymbolic

Time

JANUS

36 GPUs

     3.4x Faster Convergence
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CNN

GAN

DRL

TreeNN

RNN

Normalized Training Throughput
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LeNet
ResNet-50

Inception-v3
LSTM

LM
TreeRNN

TreeLSTM
A3C
PPO

AN
PIX2PIX

Single Machine

Imp.

Symbolic

47.6x over 
Imperative

96.0% of
Symbolic

Imperative JANUS
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Thank You!
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