TVM at Facebook
Lots of contributors at FB and elsewhere
TVM at Facebook

Why TVM?
Examples from Speech Synthesis
Sparsity
PyTorch
Why TVM for ML Systems?

- **Performance** matters
- **Flexibility** matters
- **Portability** matters
ML Systems at Facebook

- Heterogenous computing environment (CPU, GPU, Mobile, Accelerators, ...)
- Wide variety of workloads
- Rapidly increasing set of primitives
 - (over 500 in PyTorch alone)
- Exponential set of fusions
- Need **generalized** performance
- Need **flexibility** for new models
Speech Synthesis with RNNs

- Huge progress since WaveNet (2016)
- SOTA with neural **autoregressive** models
- Very challenging from systems perspective
- **Sequential dependency** structure
- **Very high** sample rates (e.g. 48kHz)
TVM for Speech Synthesis

- WaveRNN-style model architecture
- Compute dominated by GRU and FC layers
- 24kHz sampling frequency requires **40us** sampling net runtime
- Initial model with **3,400us** sampling net runtime
- **85x slower than target**

Image from LPCNet
TVM for low-hanging fruit

- Per-operator **framework overhead** (1-2us) means interpreter is infeasible
- Eliminate framework operator overhead via whole-graph compilation
- Substantial improvements for **memory-bound operations** (GEMV, elementwise)
- Still not enough...

```python
fn (%X: Tensor[[1, 10], float32],
    %y: Tensor[[30, 10], float32])
    -> Tensor[[1, 10], float32] {
  %0 = nn.dense(%X, %y, units=None)
  %1 = split(%0, indices_or_sections=int64(3), axis=1)
  %2 = %1.0
  %3 = sigmoid(%2)
  %4 = %1.1
  %5 = tanh(%4)
  %6 = %1.2
  %7 = exp(%6)
  %8 = multiply(%5, %7)
  %9 = add(%3, %8)
  %9
}
```
TVM for block-sparse kernels

- Need to reduce FLOPs significantly
- Need to reduce cache footprint
- Introduce block-sparsity in dense layers
 - cf WaveRNN, Sparse Transformers, etc
- Reduce storage footprint with int8/float16
- Substantial latency reduction
- Enables more aggressive fusion
TVM for transcendentals

- Nonlinearity computation (exp, erf, tanh, sigmoid, etc) now **bulk of time**!
- Implemented as intrinsics, lowered to function calls (no vectorization)
- Replace with rational polynomial approximations

```python
def approx_exp(x):
    x = relay.minimum(relay.maximum(x, C(-88.0)), C(88.0))
    x = C(127.0) + x * C(1.44268504)
    i = relay.cast(x, "int32")
    xf = relay.cast(i, "float32")
    x = x - xf
    Y = C(0.99992522) + x * (C(0.69583354) + x * C(0.22606716) + x * C(0.078024523))
    exponent = relay.left_shift(i, relay.expr.const(23, "int32"))
    exponent = relay.reinterpret(exponent, "float32")
    return exponent * Y
```
TVM implementation details

- Add `relay.nn.sparse_dense` for block-sparse matrix multiplication (~50 lines of TVM IR)
- Add `relay.reinterpret` to implement transcendental approximations in frontend (~10 lines of Relay IR)
- Add knobs for tuning TVM multithreading runtime
- Use AutoTVM to generate lookup table for architecture search
- **All in less than 1 week!**
TVM results

- TVM sampling model running in 30us on single server CPU core
- Beat hand-written, highly optimized baselines (https://github.com/mozilla/LPCNet) by ~40% on server CPUs
- Bonus: **Real-time on mobile CPUs for “free”**
Sparsity
Regularization

L1 regularization
- Has been around for a long time!

More complex loss terms
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks (2018)

“We find that a standard pruning technique naturally uncovers subnetworks whose initializations made them capable of training effectively.”

“dense, randomly-initialized, feed-forward networks contain subnetworks (”winning tickets”) that - when trained in isolation - reach test accuracy comparable to the original network in a similar number of iterations”
Open AI Sparse transformers (2019) [https://openai.com/blog/sparse-transformer/]
- Strided and fixed attentions as two-step sparse factorizations of normal attention

Rewon Child, Scott Gray, Alec Radford, Ilya Sutskever
Factorization

Butterfly Matrices (2019) [https://dawn.cs.stanford.edu/2019/06/13/butterfly/]

Tri Dao, Albert Gu, Matthew Eichhorn, Megan Leszczynski, Nimit Sohoni, Amit Blonder, Atri Rudra, and Chris Ré
PyTorch Training Support

Pruning API [https://github.com/pytorch/pytorch/issues/20402]
Pruning tutorial [https://github.com/pytorch/tutorials/pull/605]

Large suite of techniques pre-built
- Random, L1, Ln
- Structured, unstructured, channel-wise
- Custom mask-based

Work done by Michela Paganini
Inference Performance

- Work by Aleks Zi and Jongsoo Park
 [github.com/pytorch/FBGEMM]

- Embed weights directly into the code
- Currently using asmjit
- What would multiply out to a zero is simply never loaded
- Skips MACs

```assembly
vbroadcastss ymm7, [rdi+840]
vbroadcastss ymm6, [rdi+844]
vbroadcastss ymm5, [rdi+848]
vbroadcastss ymm4, [rdi+860]
vbroadcastss ymm3, [rdi+868]
vbroadcastss ymm2, [rdi+876]
vbroadcastss ymm1, [rdi+912]
vbroadcastss ymm0, [rdi+932]

vfmadadd31ps ymm11, ymm7, yword [L2+9952]
vfmadd231ps ymm12, ymm6, yword [L2+9984]
vfmadd231ps ymm11, ymm5, yword [L2+10016]
vfmadd231ps ymm12, ymm4, yword [L2+10048]
vfmadd231ps ymm13, ymm3, yword [L2+10080]
vfmadd231ps ymm12, ymm2, yword [L2+10112]
vfmadd231ps ymm11, ymm1, yword [L2+10144]
vfmadd231ps ymm8, ymm0, yword [L2+10176]
vbroadcastss ymm7, [rdi+972]
vbroadcastss ymm6, [rdi+1016]
vbroadcastss ymm5, [rdi+1020]
vfmadd231ps ymm11, ymm7, yword [L2+10208]
vfmadd231ps ymm10, ymm6, yword [L2+10240]
vfmadd231ps ymm9, ymm5, yword [L2+10272]
; ...
L1:
ret
align 32
L2:
db 14EE6EC414EE6EC414EE6EC414EE6EC4
   db 0854704085470408547040854704
   db FBA176C4FBA176C4FBA176C4FBA176
   db 6D1673C46D1673C46D1673C46D1673
   db 38D37243BD37243BD37243BD37243
   db 59A56DC459A56DC459A56DC459A
   db 68BA79468BA79468BA79468BA7944
; ...
```
Experimenting With Perf

Batch size 1, 256x256 weights, 90% unstructured sparsity: **2.3x faster**

11 -> 26 effective GFlops

Batch size 1, 256x256 weights, 80% 1x8 blocked sparsity: **6.3x faster**

11 -> 70 effective GFlops
Model system co-design, next steps

- Sparsity is easy to achieve at train time
- Free performance at inference time
- Exploration into train time performance (lotto tickets, Open AI blocksparse)

Suddenly, the weights of the model directly impact performance
- Benefit: we can transparently speed up models
- Challenge: we should provide perf-visibility to model engineers
TVM - PyTorch Integration
- Repository that lowers TorchScript graphs to Relay
- Work done by Kimish Patel, Lingyi Liu, Wanchao Liang, Yinghai Lu and others

- See https://tvm.ai/2019/05/30/pytorch-frontend
Optimizing Python isn’t fun

Python is too flexible to optimize directly
- Workloads being run aren’t complicated

TorchScript was developed to run models in C++
- Full Python-like language implementation
- Runtime

We want to flush out real performance
- Preserve PyTorch’s flexibility
- Easily enable fast backends like TVM
Lazy Tensors

Record computation
- Accumulate into a graph
- Execute as late as possible
On execution, try to compile
- Cache precompiled graphs

Limitations
- No control flow is captured
- Compilation latency can create perf cliffs
Profiling Executor

Record computation
- Execute immediately
- Accumulate statistics
After a couple of executions
- Rewrite the IR
- Optimize a stable subgraph

Limitations
- Multiple runs before performance
- Complicates the IR
Next Steps

We are excited about the performance TVM achieves
We are working to more tightly integrate PyTorch and TVM
Big thanks to the community