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Why TVM for ML Systems?

- Performance matters 
- Flexibility matters 
- Portability matters 



ML Systems at Facebook

- Heterogenous computing environment 
(CPU, GPU, Mobile, Accelerators, ...) 
- Wide variety of workloads 
- Rapidly increasing set of primitives  
  - (over 500 in PyTorch alone) 
- Exponential set of fusions 
- Need generalized performance 
- Need flexibility for new models



Speech Synthesis with RNNs

- Huge progress since WaveNet (2016) 
- SOTA with neural autoregressive models 
- Very challenging from systems perspective 
- Sequential dependency structure 
- Very high sample rates (e.g 48kHz) 

Image from LPCNet

https://arxiv.org/abs/1810.11846


TVM for Speech Synthesis

- WaveRNN-style model architecture 
- Compute dominated by GRU and FC layers 
- 24kHz sampling frequency requires 40us 
sampling net runtime 
- Initial model with 3,400us sampling net 
runtime 
- 85x slower than target 

Image from LPCNet

https://arxiv.org/abs/1810.11846


TVM for low-hanging fruit

- Per-operator framework overhead 
(1-2us) means interpreter is infeasible  
- Eliminate framework operator overhead 
via whole-graph compilation 
- Substantial improvements for memory-
bound operations (GEMV, elementwise) 
- Still not enough... 



TVM for block-sparse kernels

- Need to reduce FLOPs significantly 
- Need to reduce cache footprint 
- Introduce block-sparsity in dense layers 
  - cf WaveRNN, Sparse Transformers, etc 
- Reduce storage footprint with int8/float16 
- Substantial latency reduction 
- Enables more aggressive fusion

Image from OpenAI

https://openai.com/blog/sparse-transformer/


TVM for transcendentals

- Nonlinearity computation (exp, erf, tanh, 
sigmoid, etc) now bulk of time! 
- Implemented as intrinsics, lowered to 
function calls (no vectorization) 
- Replace with rational polynomial 
approximations 



- Add relay.nn.sparse_dense for block-sparse matrix multiplication (~50 
lines of TVM IR) 

- Add relay.reinterpret to implement transcendental approximations in 
frontend (~10 lines of Relay IR) 
- Add knobs for tuning TVM multithreading runtime   
- Use AutoTVM to generate lookup table for architecture search 
- All in less than 1 week!
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TVM implementation details 
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- TVM sampling model running in 30us on single server CPU core 
- Beat hand-written, highly optimized baselines (https://github.com/mozilla/LPCNet) 
by ~40% on server CPUs 
- Bonus: Real-time on mobile CPUs for "free" 
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TVM results

X

https://github.com/mozilla/LPCNet


Sparsity



Regularization

L1 regularization 
- Has been around for a long time! 

More complex loss terms 
- Alternating Direction Method of Multipliers for Sparse Convolutional Neural 
Networks (2016) Farkhondeh Kiaee, Christian Gagné, and Mahdieh Abbasi 



Lotto Ticket Hypothesis

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks (2018) 
Jonathan Frankle, Michael Carbin [https://arxiv.org/pdf/1803.03635.pdf] 

“We find that a standard pruning technique naturally uncovers subnetworks whose 
initializations made them capable of training effectively.” 

“dense, randomly-initialized, feed-forward networks contain subnetworks ("winning 
tickets") that - when trained in isolation - reach test accuracy comparable to the 
original network in a similar number of iterations”

https://arxiv.org/pdf/1803.03635.pdf


Factorization

Open AI Sparse transformers (2019) [https://openai.com/blog/sparse-transformer/] 
- Strided and fixed attentions as two-step sparse factorizations of normal attention 

Rewon Child, Scott Gray, Alec Radford, Ilya Sutskever

https://openai.com/blog/sparse-transformer/


Factorization

Butterfly Matrices (2019) [https://dawn.cs.stanford.edu/2019/06/13/butterfly/] 

Tri Dao, Albert Gu, Matthew Eichhorn, Megan Leszczynski, Nimit Sohoni, Amit 
Blonder, Atri Rudra, and Chris Ré

https://dawn.cs.stanford.edu/2019/06/13/butterfly/


PyTorch Training Support

Pruning API [https://github.com/pytorch/pytorch/issues/20402] 
Pruning tutorial [https://github.com/pytorch/tutorials/pull/605] 

Large suite of techniques pre-built 
- Random, L1, Ln 
- Structured, unstructured, channel-wise 
- Custom mask-based 

Work done by Michela Paganini

https://github.com/pytorch/pytorch/issues/20402
https://github.com/pytorch/tutorials/pull/605


Inference Performance

- Work by Aleks Zi and Jongsoo Park 
[github.com/pytorch/FBGEMM] 

- Embed weights directly into the code 
  - Currently using asmjit 
- What would multiply out to a zero is 
simply never loaded 
  - Skips MACs

vbroadcastss ymm7, [rdi+840] 
vbroadcastss ymm6, [rdi+844] 
vbroadcastss ymm5, [rdi+848] 
vbroadcastss ymm4, [rdi+860] 
vbroadcastss ymm3, [rdi+868] 
vbroadcastss ymm2, [rdi+876] 
vbroadcastss ymm1, [rdi+912] 
vbroadcastss ymm0, [rdi+932] 
vfmadd231ps ymm11, ymm7, yword [L2+9952] 
vfmadd231ps ymm12, ymm6, yword [L2+9984] 
vfmadd231ps ymm11, ymm5, yword [L2+10016] 
vfmadd231ps ymm12, ymm4, yword [L2+10048] 
vfmadd231ps ymm13, ymm3, yword [L2+10080] 
vfmadd231ps ymm12, ymm2, yword [L2+10112] 
vfmadd231ps ymm11, ymm1, yword [L2+10144] 
vfmadd231ps ymm8, ymm0, yword [L2+10176] 
vbroadcastss ymm7, [rdi+972] 
vbroadcastss ymm6, [rdi+1016] 
vbroadcastss ymm5, [rdi+1020] 
vfmadd231ps ymm11, ymm7, yword [L2+10208] 
vfmadd231ps ymm10, ymm6, yword [L2+10240] 
vfmadd231ps ymm9, ymm5, yword [L2+10272] 
; ... 
L1: 
ret 
align 32 
L2: 
db 14EE6EC414EE6EC414EE6EC414EE6EC4 
db 08547044085470440854704408547044 
db FBA176C4FBA176C4FBA176C4FBA176C4 
db 6D1673C46D1673C46D1673C46D1673C4 
db 38D3724438D3724438D3724438D37244 
db 59A56DC459A56DC459A56DC459A56DC4 
db 68BA794468BA794468BA794468BA7944 
; ...

http://github.com/pytorch/FBGEMM


Experimenting With Perf

Batch size 1, 256x256 weights, 90% unstructured sparsity: 2.3x faster

11 -> 26 effective GFlops

Batch size 1, 256x256 weights, 80% 1x8 blocked sparsity: 6.3x faster

11 -> 70 effective GFlops



Model system co-design, next steps

Sparsity is easy to achieve at train time 
- Free performance at inference time 
- Exploration into train time performance (lotto tickets, Open AI blocksparse) 

Suddenly, the weights of the model directly impact performance 
- Benefit: we can transparently speed up models 
- Challenge: we should provide perf-visibility to model engineers 



TVM - PyTorch Integration



github.com/pytorch/tvm

- Repository that lowers TorchScript 
graphs to Relay 
- Work done by Kimish Patel, Lingyi Liu, 
Wanchao Liang, Yinghai Lu and others 

- See https://tvm.ai/2019/05/30/pytorch-
frontend 



Optimizing Python isn’t fun
Python is too flexible to optimize directly 
  - Workloads being run aren’t complicated 

TorchScript was developed to run models in 
C++ 
  - Full Python-like language implementation 
  - Runtime 

We want to flush out real performance 
  - Preserve PyTorch’s flexibility 
  - Easily enable fast backends like TVM



Lazy Tensors

Record computation 
  - Accumulate into a graph 
  - Execute as late as possible 
On execution, try to compile 
  - Cache precompiled graphs 

Limitations 
- No control flow is captured 
- Compilation latency can create perf cliffs



Profiling Executor

Record computation 
  - Execute immediately 
  - Accumulate statistics 
After a couple of executions 
  - Rewrite the IR 
  - Optimize a stable subgraph 

Limitations 
- Multiple runs before performance 
- Complicates the IR



Next Steps

We are excited about the performance TVM achieves 
We are working to more tightly integrate PyTorch and TVM



Big thanks to the community


