
TVM at Facebook
Lots of contributors at FB and elsewhere

TVM at Facebook
Why TVM?
Examples from Speech Synthesis
Sparsity
PyTorch

Why TVM for ML Systems?

- Performance matters
- Flexibility matters
- Portability matters

ML Systems at Facebook

- Heterogenous computing environment
(CPU, GPU, Mobile, Accelerators, ...)
- Wide variety of workloads
- Rapidly increasing set of primitives
 - (over 500 in PyTorch alone)
- Exponential set of fusions
- Need generalized performance
- Need flexibility for new models

Speech Synthesis with RNNs

- Huge progress since WaveNet (2016)
- SOTA with neural autoregressive models
- Very challenging from systems perspective
- Sequential dependency structure
- Very high sample rates (e.g 48kHz)

Image from LPCNet

https://arxiv.org/abs/1810.11846

TVM for Speech Synthesis

- WaveRNN-style model architecture
- Compute dominated by GRU and FC layers
- 24kHz sampling frequency requires 40us
sampling net runtime
- Initial model with 3,400us sampling net
runtime
- 85x slower than target

Image from LPCNet

https://arxiv.org/abs/1810.11846

TVM for low-hanging fruit

- Per-operator framework overhead
(1-2us) means interpreter is infeasible
- Eliminate framework operator overhead
via whole-graph compilation
- Substantial improvements for memory-
bound operations (GEMV, elementwise)
- Still not enough...

TVM for block-sparse kernels

- Need to reduce FLOPs significantly
- Need to reduce cache footprint
- Introduce block-sparsity in dense layers
 - cf WaveRNN, Sparse Transformers, etc
- Reduce storage footprint with int8/float16
- Substantial latency reduction
- Enables more aggressive fusion

Image from OpenAI

https://openai.com/blog/sparse-transformer/

TVM for transcendentals

- Nonlinearity computation (exp, erf, tanh,
sigmoid, etc) now bulk of time!
- Implemented as intrinsics, lowered to
function calls (no vectorization)
- Replace with rational polynomial
approximations

- Add relay.nn.sparse_dense for block-sparse matrix multiplication (~50
lines of TVM IR)

- Add relay.reinterpret to implement transcendental approximations in
frontend (~10 lines of Relay IR)
- Add knobs for tuning TVM multithreading runtime
- Use AutoTVM to generate lookup table for architecture search
- All in less than 1 week!

10

TVM implementation details

X

11

12

- TVM sampling model running in 30us on single server CPU core
- Beat hand-written, highly optimized baselines (https://github.com/mozilla/LPCNet)
by ~40% on server CPUs
- Bonus: Real-time on mobile CPUs for "free"

13

TVM results

X

https://github.com/mozilla/LPCNet

Sparsity

Regularization

L1 regularization
- Has been around for a long time!

More complex loss terms
- Alternating Direction Method of Multipliers for Sparse Convolutional Neural
Networks (2016) Farkhondeh Kiaee, Christian Gagné, and Mahdieh Abbasi

Lotto Ticket Hypothesis

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks (2018)
Jonathan Frankle, Michael Carbin [https://arxiv.org/pdf/1803.03635.pdf]

“We find that a standard pruning technique naturally uncovers subnetworks whose
initializations made them capable of training effectively.”

“dense, randomly-initialized, feed-forward networks contain subnetworks ("winning
tickets") that - when trained in isolation - reach test accuracy comparable to the
original network in a similar number of iterations”

https://arxiv.org/pdf/1803.03635.pdf

Factorization

Open AI Sparse transformers (2019) [https://openai.com/blog/sparse-transformer/]
- Strided and fixed attentions as two-step sparse factorizations of normal attention

Rewon Child, Scott Gray, Alec Radford, Ilya Sutskever

https://openai.com/blog/sparse-transformer/

Factorization

Butterfly Matrices (2019) [https://dawn.cs.stanford.edu/2019/06/13/butterfly/]

Tri Dao, Albert Gu, Matthew Eichhorn, Megan Leszczynski, Nimit Sohoni, Amit
Blonder, Atri Rudra, and Chris Ré

https://dawn.cs.stanford.edu/2019/06/13/butterfly/

PyTorch Training Support

Pruning API [https://github.com/pytorch/pytorch/issues/20402]
Pruning tutorial [https://github.com/pytorch/tutorials/pull/605]

Large suite of techniques pre-built
- Random, L1, Ln
- Structured, unstructured, channel-wise
- Custom mask-based

Work done by Michela Paganini

https://github.com/pytorch/pytorch/issues/20402
https://github.com/pytorch/tutorials/pull/605

Inference Performance

- Work by Aleks Zi and Jongsoo Park
[github.com/pytorch/FBGEMM]

- Embed weights directly into the code
 - Currently using asmjit
- What would multiply out to a zero is
simply never loaded
 - Skips MACs

vbroadcastss ymm7, [rdi+840]
vbroadcastss ymm6, [rdi+844]
vbroadcastss ymm5, [rdi+848]
vbroadcastss ymm4, [rdi+860]
vbroadcastss ymm3, [rdi+868]
vbroadcastss ymm2, [rdi+876]
vbroadcastss ymm1, [rdi+912]
vbroadcastss ymm0, [rdi+932]
vfmadd231ps ymm11, ymm7, yword [L2+9952]
vfmadd231ps ymm12, ymm6, yword [L2+9984]
vfmadd231ps ymm11, ymm5, yword [L2+10016]
vfmadd231ps ymm12, ymm4, yword [L2+10048]
vfmadd231ps ymm13, ymm3, yword [L2+10080]
vfmadd231ps ymm12, ymm2, yword [L2+10112]
vfmadd231ps ymm11, ymm1, yword [L2+10144]
vfmadd231ps ymm8, ymm0, yword [L2+10176]
vbroadcastss ymm7, [rdi+972]
vbroadcastss ymm6, [rdi+1016]
vbroadcastss ymm5, [rdi+1020]
vfmadd231ps ymm11, ymm7, yword [L2+10208]
vfmadd231ps ymm10, ymm6, yword [L2+10240]
vfmadd231ps ymm9, ymm5, yword [L2+10272]
; ...
L1:
ret
align 32
L2:
db 14EE6EC414EE6EC414EE6EC414EE6EC4
db 08547044085470440854704408547044
db FBA176C4FBA176C4FBA176C4FBA176C4
db 6D1673C46D1673C46D1673C46D1673C4
db 38D3724438D3724438D3724438D37244
db 59A56DC459A56DC459A56DC459A56DC4
db 68BA794468BA794468BA794468BA7944
; ...

http://github.com/pytorch/FBGEMM

Experimenting With Perf

Batch size 1, 256x256 weights, 90% unstructured sparsity: 2.3x faster

11 -> 26 effective GFlops

Batch size 1, 256x256 weights, 80% 1x8 blocked sparsity: 6.3x faster

11 -> 70 effective GFlops

Model system co-design, next steps

Sparsity is easy to achieve at train time
- Free performance at inference time
- Exploration into train time performance (lotto tickets, Open AI blocksparse)

Suddenly, the weights of the model directly impact performance
- Benefit: we can transparently speed up models
- Challenge: we should provide perf-visibility to model engineers

TVM - PyTorch Integration

github.com/pytorch/tvm

- Repository that lowers TorchScript
graphs to Relay
- Work done by Kimish Patel, Lingyi Liu,
Wanchao Liang, Yinghai Lu and others

- See https://tvm.ai/2019/05/30/pytorch-
frontend

Optimizing Python isn’t fun
Python is too flexible to optimize directly
 - Workloads being run aren’t complicated

TorchScript was developed to run models in
C++
 - Full Python-like language implementation
 - Runtime

We want to flush out real performance
 - Preserve PyTorch’s flexibility
 - Easily enable fast backends like TVM

Lazy Tensors

Record computation
 - Accumulate into a graph
 - Execute as late as possible
On execution, try to compile
 - Cache precompiled graphs

Limitations
- No control flow is captured
- Compilation latency can create perf cliffs

Profiling Executor

Record computation
 - Execute immediately
 - Accumulate statistics
After a couple of executions
 - Rewrite the IR
 - Optimize a stable subgraph

Limitations
- Multiple runs before performance
- Complicates the IR

Next Steps

We are excited about the performance TVM achieves
We are working to more tightly integrate PyTorch and TVM

Big thanks to the community

