Sharing, Protection, and Compatibility for Reconfigurable Fabric with AmorphOS

AHMED KHAWAJA1, JOSHUA LANDGRAF1, ROHITH PRAKASH1
MICHAEL WEI2, ERIC SCHKUFZA2, CHRISTOPHER J. ROSSBACH1,2

1UT AUSTIN
2VMWARE RESEARCH GROUP
PUBLISHED IN OSDI 2018
Goals

Protected Sharing/Isolation
- Mutually distrustful applications

Compatibility / Portability
- HDL programming model
- Accelerators written to AmorphOS interfaces
- 15+ benchmarks run unchanged on Microsoft Catapult and Amazon F1

Elastic Scalability
- User logic scales with resource availability
- Multiplex fabric in time \textit{and} space
- Avoid Partial Reconfiguration (PR)
- Avoid fixed slots
AmorphOS Abstractions

- **Zone**: Allocatable Unit of Fabric
 - 1 Global zone
 - N dynamically sized, sub-dividable PR zones

- **Hull**: OS/Protection Layer
 - Memory Protection, I/O Mediation
 - Interfaces form a compatibility layer

- **Morphlet**: Protection Domain
 - Extends Process abstraction
 - Encapsulate user logic on global or PR zone

- **Registry**: bitstream cache
 - Hides latency of place-and-route (PaR)
Open Source Soon

www.amorphos.io
https://github.com/afkhawaja/amorphos

Supported Platforms
- Microsoft Catapult (TACC)
- Amazon F1 FPGA Cloud Platform
- Intel Stratix 10 (in progress)

Workloads
- DNNWeaver
- CHStone
- Crypto Mining
- Memory Synthetics
- TVM (in progress)